Line optical traps formed by LC SLM

Alexander Korobtsov
Lebedev Physical Institute, Samara, Russia

Svetlana Kotova
Lebedev Physical Institute, Samara, Russia,
Samara State Aerospace University (SSAU), Russia

Nikolay Losevsky
Lebedev Physical Institute, Samara, Russia

Aleksandra M. Mayorova (Login required)
Lebedev Physical Institute, Samara, Russia,
Samara State Aerospace University, Russia

Sergey Samagin
Lebedev Physical Institute, Samara, Russia


Paper #1893 received 2014.12.04; revised manuscript received 2015.01.22; accepted for publication 2015.02.01; published online 2015.03.28.

DOI: 10.18287/jbpe-2015-1-1-64

Abstract

The methods for generation of optical traps in the form of line segments by means of liquid crystal modulators of two types are addressed in the paper, they are a multi-pixel modulator HOLOEYE HEO 1080P and a tunable liquid crystal focusing device (4-channel modulator) developed by the authors. The numerical and experimental assessment of the capture forces of the generated optical trap is fulfilled. The description of manipulation experiments with microobjects, including biological ones, carried out by the optical traps with the intensity distribution in the form of segments is offered.

Keywords

optical manipulation; liquid crystal modulators; biological microobjects; light segment

Full Text:

PDF

References


1. H. Zhang, and K-K. Liu “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671-690 (2008). Crossref

2. A. Banerjee, S. Chowdhary, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomedical Optics 16, 051302 (2011). Crossref

3. K. Svoboda, and S. Block, “Biological applications of optical forces,” Ann. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994). Crossref

4. R. Skidanov, M. Rykov, G. Iannacchione, and S. Krivoshlykov, “The modification of laser beam for optimization of optical trap force characteristic,” Computer optics 36, 377-386 (2012).

5. M. Rykov, and R. Skidanov, “Modifying the laser beam intensity distribution for obtaining improved strength characteristics of optical trap,” Applied Optics 53(2), 156-164 (2014). Crossref

6. A. Korobtsov, S. Kotova, N. Losevsky, A. Mayorova, and S. Samagin, “Formation of contour optical traps with a four-channel liquid crystal focusator,” Quantum Electronics 44(12), 1157-1164 (2014). Crossref

7. F. Cheong, C. Sow, A. Wee, P. Shao, A. Bettiol, J. van Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers,” Applied Physics, 83, 121-125 (2006). Crossref

8. R. W. Applegate Jr, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Applied Physics Letter 92(1), 01394 (2008).

9. R. W. Applegate-Jr, D. W. M. Marr, J. Squier, and S.W. Graves, “Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars,” Optic Express 17, 16731 (2009). Crossref

10. R. Skidanov, and A. Porfir’ev, “Optical micromanipulation with using binary focusator,” Computer optics 34, 214-218 (2010).

11. E. Spyratou, M. Makropoulou, and A. Serafetinides, “Red blood cell micromanipulation with elliptical laser beam profile optical tweezers in different osmolarity conditions,” Proc. of SPIE-OSA Biomedical Optics, 8092, 80920T (2011).

12. R. Dasgupta, S.K. Mohanty, and P.K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25(19), 1625-1628 (2003).

13. R. Applegate Jr., J. Squier, T. Vestad, J. Oakey, and D. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Optics Express 12(19), 4390-4398 (2004). Crossref

14. R. Applegate Jr., J. Squier, T. Vestad, J. Oakey, D. Marr, P. Bado, M. A. Dugan, A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab. Chip. 6(3), 422-6 (2006). Crossref

15. S. P. Kotova, V. V. Patlan, and S. A. Samagin, “Tunable liquid-crystal focusing device. I. Theory,” Quantum Electron. 41(1), 58-64 (2011). Crossref

16. S. P. Kotova, V. V. Patlan, and S.A. Samagin, “Tunable liquid-crystal focusing device. II. Experiment,” Quantum Electron. 41(1), 65-70 (2011). Crossref

17. S. P. Kotova, V. V. Patlan, and S.A. Samagin, “Focusing light into a line segment of arbitrary orientation using a four-channel liquid crystal light modulator,” Journal of Optics 15(3), 035706 (2013). Crossref

18. M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F.S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Review of Scientific Instruments 73(4), 1687-1696 (2002). Crossref

19. A. Korobtsov, S. Kotova, N. Losevsky, A. Mayorova, V. Patlan, and S. Samagin, “Optical trap formation with a four-channel liquid crystal light modulator,” Journal of Optics 16, 035704 (2014).






© 2014-2020 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+