Tissue Optics and Photonics: Biological Tissue Structures

Valery V. Tuchin (Login required)
Saratov State University, Russia,
Institute of Precision Mechanics and Control RAS, Saratov, Russia,
Samara State Aerospace University (SSAU), Russia


Paper #1991 received 2014.12.25; accepted for publication 2015.02.01; published online 2015.03.28.

DOI: 10.18287/jbpe-2015-1-1-3

Abstract

This is the first section of the review-tutorial paper describing fundamentals of tissue optics and photonics mostly devoted to biological tissue structures and their specificity related to light interactions at its propagation in tissues. The next sections of the paper will describe light-tissue interactions caused by tissue dispersion, scattering, and absorption properties, including light reflection and refraction, absorption, elastic quasi-elastic and inelastic scattering. The major tissue absorbers and types of elastic scattering, including Rayleigh and Mie scattering, will be presented. 

Keywords

biophotonics; tissue optics; tissue structures

Full Text:

PDF

References


1. R. R. Anderson, and J. A. Parrish, Optical properties of human skin in The Science of Photomedicine, eds. J. D. Regan, and J. A. Parrish, Plenum Press, NY, 147–194 (1982).

2. G. J. Müller, and D. H. Sliney (eds.) Dosimetry of Laser Radiation in Medicine and Biology, SPIE Inst. Adv. Opt. Techn. IS5, SPIE Press, Bellingham, WA. (1989),

3. A. V. Priezzhev, V. V. Tuchin, and L. P. Shubochkin, Laser Diagnostics in Biology and Medicine, Nauka, Moscow (1989).

4. K. Frank, and M. Kessler (eds.), Quantitative Spectroscopy in Tissue, pmi Verlag, Frankfurt am Main (1992).

5. A. J. Welch, and van M. J. C. Gemert (eds.), Tissue Optics, Academic, NY (1992).

6. S. L. Jacques, “Monte Carlo modeling of light transport in tissues,” in Tissue Optics, A. J. Welch, and van M. C. J. Gemert (eds.), Academic, NY (1992).

7. G. Müller, B. Chance, R. Alfano, et al. (eds.), Medical Optical Tomography: Functional Imaging and Monitoring, SPIE Inst. Adv. Opt. Techn. IS11, SPIE Press, Bellingham, WA (1993).

8. V. V. Tuchin, Lasers light scattering in biomedical diagnostics and therapy, J. Laser Appl. 5 (2, 3), 43–60 (1993). Crossref

9. V. V. Tuchin (ed.), Selected Papers on Tissue Optics: Applications in Medical Diagnostics and Therapy, MS102, SPIE Press, Bellingham, WA (1994).

10. M. S. Patterson, “Noninvasive measurement of tissue optical properties: current status and future prospects” in Comments Mol. Cell. Biophys. 8, Gordon and Breach Sci. Publ. Inc., 387–417 (1995).

11. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, Phase measurement of light absorption and scatter in human tissue, Rev. Sci. Instrum. 69(10), 3457–3481 (1998). Crossref

12. V. V. Tuchin, Light scattering study of tissues, Physics – Uspekhi 40 (5), 495–515 (1997). Crossref

13. O. Minet, G. Müller, and J. Beuthan (eds.), Selected Papers on Optical Tomography, Fundamentals and Applications in Medicine, MS147, SPIE Press, Bellingham, WA (1998).

14. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Tutorial Texts in Optical Engineering TT38, SPIE Press, Bellingham, WA (2000).

15. V. V. Tuchin (ed.), Handbook of Optical Biomedical Diagnostics, PM107, SPIE Press, Bellingham, WA (2002) (translated to Russian, Fizmatlit, Moscow, 2007, 2 vols.).

16. H.-P. Berlien, and G. J. Müller (eds.), Applied Laser Medicine, Springer-Verlag, Berlin (2003).

17. T. Vo-Dinh (ed.), Biomedical Photonics Handbook, CRC Press, Boca Raton (2003).

18. V. V. Tuchin (ed.), Coherent-Domain Optical Methods for Biomedical Diagnostics, Environmental and Material Science, vols. 1 & 2, Kluwer Academic Publishers, Boston, Dordrecht, L. (2004).

19. B. Wilson, V. Tuchin, and S. Tanev (eds.), Advances in Biophotonics, NATO Science Series I. Life and Behavioural Sciences, 369, IOS Press, Amsterdam (2005).

20. V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications, Springer, NY (2006).

21. V. V. Tuchin, Optical Clearing of Tissues and Blood, PM 154, SPIE Press, Bellingham, WA (2006).

22. A. Kishen, and A. Asundi (eds.), Photonics in Dentistry. Series of Biomaterials and Bioengineering, Imperial College Press, London (2006).

23. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed., PM 166, SPIE Press, Bellingham, WA (2007) (translated to Russian, Fizmatlit, Moscow, 2013).

24. L. V. Wang, and H.-I. Wu, Biomedical Optics: Principles and Imaging, Wiley-Intersience, Hoboken, NJ (2007).

25. V. V. Tuchin, A clear vision for laser diagnostics, IEEE J. Select. Tops. Quant. Electr. 13(6), 1621–1628 (2007). Crossref

26. R. Splinter, and B. A. Hooper, An Introduction to Biomedical Optics, CRC Press, Taylor & Francis Group, NY, London (2007).

27. V. V. Tuchin (ed.), Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, CRC Press, Taylor & Francis Group, London (2009).

28. M. F. Yang, V. V. Tuchin, and A. N. Yaroslavsky, “Principles of light skin interactions” in Light-Based Therapies for Skin of Color, E. D. Baron (ed.), Springer, London, 1–45 (2009).

29. G. B. Altshuler, and V. V. Tuchin, “Physics behind the light-based technology: Skin and hair follicle interactions with light” in Cosmetic Applications of Laser & Light-Based Systems, G. Ahluwalia (ed.), William Andrew, Inc., Norwich, NY, 49–109 (2009).

30. V. V. Tuchin, “Optical spectroscopy of biological materials,” Chapter 16 in Encyclopedia of Applied Spectroscopy, D. L. Andrews (ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 555–626 (2009).

31. E. D. Baron (ed.), Light-Based Therapies for Skin of Color, Springer, London (2009).

32. G. Ahluwalia (ed.), Light Based Systems for Cosmetic Application, William Andrew, Norwich (2009).

33. K.-E. Peiponen, R. Myllylä, and A. V. Priezzhev, Optical Measurement Techniques, Innovations for Industry and the Life Science, Springer-Verlag, Berlin, Heidelberg (2009).

34. P. Zakharov, and F. Scheffold, Advances in dynamic light scattering techniques, in Light Scattering Reviews 4: Single Light Scattering and Radiative Transfer, A. A. Kokhanovsky (ed.), Springer, Heidelberg, 433–468 (2009).

35. A. Wax, and V. Backman (eds.), Biomedical Applications of Light Scattering, McGraw-Hill, NY (2010).

36. V. V. Tuchin (ed.), Handbook of Photonics for Biomedical Science, CRC Press, Taylor & Francis Group, London (2010).

37. M. M. Nazarov, A. P. Shkurinov, V. V. Tuchin, and X.-C. Zhang, Terahertz tissue spectroscopy and imaging, Chapter 23 in Handbook of Photonics for Biomedical Science, V. V. Tuchin (ed.), CRC Press, Taylor & Francis Group, London, 591–617 (2010).

38. F. S. Pavone (ed.), Laser Imaging and Manipulation in Cell Biology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2010).

39. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, Tissue optical immersion clearing, Expert Rev. Med. Devices 7(6), 825–842 (2010). Crossref

40. V. V. Tuchin, Lasers and Fibre Optics in Biomedical Science, 2nd ed., Fizmatlit, Moscow (2010).

41. A. P. Dhawan, B. D’Alessandro, and X. Fu, “Optical Imaging Modalities for Biomedical Applications,” IEEE Reviews in Biomedical Engineering 3, 69−92 (2010). Crossref

42. X.-C. Zhang, and J. Xu, Introduction to THz Wave Photonics, Springer, NY (2010).

43. E. A. Genina, A. N. Bashkatov, K. V. Larin, and V. V. Tuchin, “Light–tissue interaction at optical clearing,” in Laser Imaging and Manipulation in Cell Biology, F. S. Pavone (ed.) (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim), 115–164 (2010).

44. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, Optical properties of skin, subcutaneous, and muscle tissues: a review, J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).

45. D. A. Boas, C. Pitris, and N. Ramanujam (eds.), Handbook of Biomedical Optics, CRC Press, Taylor & Francis Group, London (2011).

46. V. V. Tuchin (ed.), Advanced Optical Cytometry: Methods and Disease Diagnoses, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2011).

47. V. V. Tuchin, Dictionary of Biomedical Optics and Biophotonics, SPIE Press, Bellingham, WA (2012).

48. K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion,” IEEE J. Select. Tops. Quant. Electr. 18 (3) 1244–1259 (2012). Crossref

49. V. V. Tuchin (ed.), Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring and Material Science, Berlin, Heidelberg, N. Y., Springer-Verlag, 2nd ed., 2 vols (2013).

50. R. K. Wang, and V. V. Tuchin, “Optical coherence tomography: light scattering and imaging enhancement,” in Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring and Material Science. V. 1, 2nd edition, V. V. Tuchin (ed.), Springer-Verlag, Berlin, Heidelberg, NY, 665–742 (2013).

51. A. Douplik, G. Saiko, I. Schelkanova, and V. V. Tuchin, “The response of tissue to laser light,” in Lasers for Medical Applications: Diagnostics, Therapy and Surgery, H. Jelinkova (ed.), Woodhead Publishing, Ltd., Cambridge, pp.47–109 (2013).

52. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013). Crossref

53. D. Zhu, Q. Luo, and V. V. Tuchin, “Tissue Optical Clearing,” in Advanced Biophotonics: Tissue Optical Sectioning, R. K. Wang, and V. V. Tuchin (eds.), CRC Press, Taylor & Francis Group, Boca Raton, London, NY, 621–672 (2013).

54. J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: Tissue Optical Clearing Window for Blood Flow Monitoring (Invited Paper),” IEEE J. Select. Tops Quant. Electr. 20 (2), 6801112-1–12 (2014).

55. O. Nadiarnykh, and P. J. Campagnola, “SHG and optical clearing,” in Second Harmonic Generation Imaging, F. S. Pavone, and P. J. Campagnola (eds.), CRC Press, Taylor & Francis Group, Boca Raton, London, NY, 169−189 (2014).

56. F. S. Pavone, and P. J. Campagnola (eds.), Second Harmonic Generation Imaging, CRC Press, Taylor & Francis Group, Boca Raton, London, NY (2014).

57. T. Vo-Dinh (ed.), Biomedical Photonics Handbook, 2nd ed., CRC Press, Boca Raton (2014).

58. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Press, PM 254, 3rd ed., SPIE Press, Bellingham, WA (2015).

59. P. Prasad, Introduction to Biophotonics. Wiley-Interscience, Hoboken, NJ (2003).

60. L. Pavesi, Ph. M. Fauchet (eds.), Biophotonics (Biological and Medical Physics, Biomedical Engineering), Springer Verlag, Berlin, Heidelberg (2008).

61. J. Popp, V. Tuchin, A. Chiou, and S. H. Heinemann (eds.), Handbook of Biophotonics: Basics and Techniques, vol.1, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2011).

62. J. Popp, V. V. Tuchin, A. Chiou, and S. H. Heinemann (eds.), Handbook of Biophotonics: Photonics for Health Care, vol. 2, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2011).

63. J. Popp, V. V. Tuchin, A. Chiou, and S. H. Heinemann (eds.), Handbook of Biophotonics: Photonics in Pharmaceutics, Bioanalysis and Environmental Research, vol. 3, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2012).

64. R. K. Wang, and V. V. Tuchin, Advanced Biophotonics: Tissue Optical Sectioning, CRC Press, Taylor & Francis Group, London (2013).

65. A. Yariv, Quantum Electronics, John Wiley & Sons, NY (1989).

66. F. H. Silver, Biological Materials: Structure, Mechanical Properties, and Modelling of Soft Tissues, New York Univ. Press, NY (1987).

67. F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book, Academic, L. (1990).

68. T. B. Fitzpatrick, A. Z. Eisen, K. Wolff, I. M. Freedberg, and K. F. Austen (eds.), Dermatology in General Medicine, McGraw-Hill, NY (1993).

69. J. D. Bancroft, and A. Stevens (eds.), Theory and Practice of Histological Techniques, Churchill Livingstone, Edinburgh, NY (1990).

70. R. G. Kessel, Basic Medical Histology: The Biology of Cells, Tissues, and Organs, Oxford Univ. Press, NY (1998).

71. P. Agache, and P. Humbert (eds.), Measuring the Skin, Springer, Berlin, Heidelberg (2004). Crossref

72. T. A. Waigh, Applied Biophysics: Molecular Approach for Physical Scientists, John Wiley & Sons Ltd, Chichester (2007).

73. I. P. Herman, Physics of the Human Body, Springer, Berlin, Heidelberg, NY (2007).

74. D. M. Maurice, “The cornea and sclera” in The Eye, H. Davson (ed.), 3rd ed., 1B, Academic Press, Orlando, 1–158 (1984).

75. F. A. Bettelheim, “Physical basis of lens transparency” in The Ocular Lens: Structure, Function and Pathology, H. Maisel (ed.), Marcel-Dekker, NY, 265–300 (1985).

76. M. J. Hogan, J. A. Alvardo, and J. Weddel, Histology of the Human Eye, W. B. Sanders Co., Philadelphia (1971).

77. X. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1(2), 212–216 (1996). Crossref

78. L. Moss-Salentijn, and M. Hendricks-Klyvert, Dental and Oral Tissues, An Introduction, 3rd edition, Lea & Febiger, Philadelphia, L. (1990).

79. R. L. McCally, and R. A. Farrell, “Light scattering from cornea and corneal transparency,” in Noninvasive Diagnostic Techniques in Ophthalmology, B. R. Master (ed.), Springer-Verlag, NY, 189–210 (1990).

80. R. A. Farrell, D. E. Freund, and R. L. McCally, “Research on corneal structure” in Johns Hopkins APL Techn. Digest 11, 191–199 (1990).

81. R. A. Farrell, and R. L. McCally, “Corneal transparency” in Principles and Practice of Ophthalmology, D. A. Albert, and F. A. Jakobiec (eds.), W. B. Saunders, Philadelphia, PA, 629–643 (2000).

82. Y. Kamai, and T. Ushiki, The three-dimensional organization of collagen fibrils in the human cornea and sclera, Invest. Ophthalmol. & Visual Sci. 32, 2244–2258 (1991).

83. Y. Huang, and K. M. Meek, Swelling studies on the cornea and sclera: the effect of pH and ionic strength, Biophys. J. 77, 1655–1665 (1999). Crossref

84. O. Kostyuk, O. Nalovina, T. M. Mubard, J. W. Regini, K. M. Meek, A. J. Quantock, G. F. Elliott, and S. A. Hodson, “Transparency of the bovine corneal stroma at physiological hydration and its dependence on concentration of the ambient anion,” J. Physiol. 543, 633–642 (2002). Crossref

85. K. M. Meek, S. Dennis, and S. Khan, “Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells,” Biophys. J. 85, 2205–2212 (2003). Crossref

86. H. Schaefer, and T. E. Redelmeier, Skin Barrier: Principles of Percutaneous Absorption, Karger, Basel (1996).

87. http://www.sportsci.org/encyc/adipose/adipose.html. December 17, 2014.

88. M. J. Costello, T. N. Oliver, and L. M. Cobo, “Cellular architecture in aged related human nuclear cataracts,” Invest. Ophthal. & Vis. Sci. 3(1), 2244–2258 (1992).

89. Y. Ozaki, “Medical application of Raman spectroscopy,” Appl. Spectrosc. Rev. 24(3), 259–312 (1988). Crossref

90. H. A. Linares, C. W. Kischer, M. Dobrkovsky, and D. L. Larson, “The histiotypic organization of the hypertrophic scar in humans,” J. Invest. Dermatol. 59, 323–331 (1972).

91. P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19(2), 021111-1–10 (2014). Crossref

92. N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Phys. Med. Biol. 49(3), 469–483 (2004). Crossref

93. S. Kaiplavil, A. Mandelis, and B. T. Amaechi, “Truncated-correlation photothermal coherence tomography of artificially demineralized animal bones: two- and three-dimensional markers for mineral loss monitoring,” J. Biomed. Opt. 19(2), 026015-1–14 (2014). Crossref

94. G. Li, J. Yin, J. Gao, T. S. Cheng, N. J. Pavlos, C. Zhang, and M. H. Zheng, “Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes Arthritis. Res. Ther. 15(6), 223-1–12 (2013). Crossref

95. S. J. Matcher, “A review of some recent developments in polarization-sensitive optical imaging techniques for the study of articular cartilage,” J. Appl. Phys. 105, 102041 (2009). Crossref

96. M. Sivakumar, V. Oliveira, S. Oliveira, J. Leitão, and R. Vilar, “Influence of tubule orientation on cone-shaped texture development in laser-ablated dentin,” Lasers Med. Sci. 21, 160–164 (2006). Crossref

97. V. V. Tuchin, and G. B. Altshuler, “Dental and oral tissue optics” in Photonics in Dentistry. Series of Biomaterials and Bioengineering, A. Kishen and A. Asundi (eds.) Imperial College Press, L., 245–300 (2006).

98. B. M. Eley, and J. D. Manson, Periodontics, 5th ed. Elsevier Ltd., Philadelphia (2004).

99. N. A. Trunina, V. V. Lychagov, and V. V. Tuchin, “Study of water diffusion in human dentin by optical coherent tomography,” Opt. Spectrosc. 109(2), 162–168 (2010). Crossref

100. P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Plelan, I. Meglinski, et al., “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarizationsenstive optical coherence tomography,” Phys. Med. Biol. 55, 3777–3787 (2010). Crossref

101. M. H. Steinberg, B. G. Forget, D. R. Higgs, and D. J. Weatherall (eds.), Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management, 2nd ed., Cambridge, Cambridge University Press (2009). Crossref

102. M. Fabry, and J. M. Old, “Laboratory methods for diagnosis and evaluation of hemoglobin disorders,” Chapter 28 in Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management, M. H. Steinberg, B. G. Forget, D. R. Higgs, and D. J. Weatherall (eds.), Cambridge, Cambridge University Press, 656–686 (2009).

103. V. V. Tuchin, In vivo optical flow cytometry and cell imaging, Rivista Del Nuovo Cimento, 37(7), 375–416 (2014).

104. E. I. Galanzha, M. S. Kokoska, E. V. Shashkov, J.-W. Kim, V. V. Tuchin, and V. P. Zharov, “In vivo fiber photoacoustic detection and photothermal purging of metastasis targeted by nanoparticles in sentinel lymph nodes at single cell level,” J. Biophoton. 2, 528–539 (2009). Crossref

105. S. A. Asher, and J. T. Baca, “Tear fluid photonic crystal contact lens noninvasive glucose sensors” in Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, V. V. Tuchin (ed.), Taylor & Francis Group LLC, CRC Press, 267–297 (2009).






© 2014-2017 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+