An improved algorithm of structural image reconstruction with rapid scanning optical delay line for Optical Coherence Tomography

Denis A. Petrov
Biomedical Engineering department, Tambov State Technical University, Russia

Saif N. Abdulkareem
Biomedical Engineering department, Tambov State Technical University, Russia

Kamal E. S. Ghaleb
Biomedical Engineering department, Tambov State Technical University, Russia

Sergey G. Proskurin (Login required)
Biomedical Engineering department, Tambov State Technical University, Russia

Paper #2363 received 2015.03.17; revised manuscript received 2016.03.01; accepted for publication 2016.03.01; published online 2016.03.20.

DOI: 10.18287/JBPE16.02.020302


A new algorithm of structural image reconstruction in Optical Coherence Tomography is described. The modified rapid scanning optical delay (RSOD) line, low numerical aperture, small angle raster scanning with consecutive averaging and multilevel digital filtering have been used to obtain high quality structural images of an onion and the nail bed of a human thumb. The proposed method significantly improves image contrast and allows visualization of small blood capillaries under the nail plate.


optical coherence tomography; coherence probing depth; rapid scanning optical delay; small-angle raster averaging; nail bed; blood capillaries

Full Text:



1. A. F. Fercher, C. K. Hitzanberger, W. Drexler, G. Kamp, and H. Sattman, “In Vivo Optical Coherence Tomography,” Am. J. Ophtalmol. 116(1), 113-114 (1993). Crossref

2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178-1181 (1991).

3. G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express 19(4), 3657–3666 (2011). Crossref

4. S. G. Proskurin, A. Y. Potlov, K. E. S. Ghaleb, and S. N. Abdulkareem, “Structural Image Reconstruction of Biological Object by Using Raster Averaging in Optical Coherence Tomography,” Bulletin of YuFU, Technical Sciences 9, 129–134 (2012).

5. S. G. Proskurin, “Raster scan and averaging for speckle reduction in optical coherence tomography,” Quantum Electronics 42(6), 495–499 (2012).

6. R. Vinayakrishnan, Speckles in laser Doppler perfusion imaging, Ph.D Thesis, University of Twente, Enschede, The Netherlands (2007).

7. M. Y. Kirillin, G. Farhat, E. A. Sergeeva, M. C. Kolios, and A. Vitkin, “Speckle statistics in OCT images: Monte Carlo simulations and experimental studies,” Optics Letters 39(12), 3472–3475 (2014). Crossref

8. S. G. Proskurin, and S. V. Frolov, “Visualization of blood vessels using optical coherence tomography,” Biomedical Engineering 46(3), 9–13 (2012). Crossref

9. B. Marco, A. J. Kennerley, I. Meglinski, and S. Matcher, “Application of Doppler optical coherence tomography in rheological studies: blood flow and vessels mechanical properties evaluation,” Journal of Innovative Optical Health Sciences 2(4), 431–440 (2009).

10. S. G. Proskurin, A. Y. Potlov, and S. V. Frolov, “One specific velocity color mapping using optical coherence tomography,” Journal of Biomedical Optics 20(5), 051034 (2015). Crossref

11. T. Q. Xie, Z. G. Wang, and Y. T. Pan, “High-speed optical coherence tomography using fiberoptic acousto-optic phase modulation,” Opt. Express 11(24), 3210–3219 (2003). Crossref

12. S. G. Proskurin, “Optical Coherence-domain Imaging of Subcutaneous Human Blood Vessels in vivo,” Advances in Life Sciences 1(2), 40-44 (2012).

13. A. Rollins, M. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. Izatt, “In vivo video rate optical coherence tomography,” Opt. Exp. 3(6), 219-229 (1998). Crossref

14. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. D. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).

15. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

16. R. Koprowski, and Z. Wróbel, “Image Processing in Optical Coherence Tomography: Using Matlab.Katowice,” Poland: University of Silesia, 2011.

17. Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).

18. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” Journal of Biomedical Optics 4(1), 95-105 (1999). Crossref

19. X. Zha, Image processing of optical coherence tomography for image guided dental drilling, Master thesis, Delft university of technology (2012).

© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+