Tissue Optics and Photonics: Light-Tissue Interaction

Valery V. Tuchin (Login required)
Saratov State University, Russia
Institute of Precision Mechanics and Control RAS, Saratov, Russia
Samara State Aerospace University (SSAU), Russia


Paper #2469 received 2015.05.30; accepted for publication 2015.06.29; published online 2015.06.30.

DOI: 10.18287/jbpe-2015-1-2-98

Abstract

This is the second section of the review-tutorial paper describing fundamentals of tissue optics and photonics. As the first section of the paper was mostly devoted to description of biological tissue structures and their specificity related to interactions with light [1], this section 3 describes light-tissue interactions themselves that caused by tissue dispersion, scattering, and absorption properties, including light reflection and refraction, absorption, elastic, and quasi-elastic scattering. The major tissue absorbers and modes of elastic scattering, including Rayleigh and Mie scattering, will be presented.

Keywords

tissue optics; multiple scattering; quasi-elastic scattering; Doppler effect; absorption; index of refraction; random phase screen; speckles; optical coherence tomography (OCT); diffusion wave spectroscopy; polarized light; optical clearing

References


1. V.V. Tuchin, “Tissue Optics and Photonics: Biological Tissue Structures [Review]”, J. of Biomedical Photonics & Eng., 1(1), 3-21 (2015).

2. L.V. Wang and H.-I. Wu, Biomedical Optics: Principles and Imaging, Wiley-Intersience, Hoboken, NJ (2007). Crossref

3. R. Splinter and B.A. Hooper, An Introduction to Biomedical Optics, CRC Press, Taylor & Francis Group, NY, London (2007).

4. T. Vo-Dinh (ed.), Biomedical Photonics Handbook, 2nd ed., CRC Press, Boca Raton (2014).

5. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Press, PM 254, 3rd ed., SPIE Press, Bellingham, WA (2015). Crossref

6. M. Born and E. Wolf, Principles of Optics, 7th ed., Cambridge Univ. Press, Cambridge (1999).

7. G. S. Landsberg, Optics, 6th ed. [in Russian], Fizmatlit, Moscow (2006).

8. A. Akhmanov, S.Yu. Nikitin, Physical Optics, Oxford University Press, Oxford (1997).

9. V.V. Tuchin, Lasers and Fiber Optics in Biomedical Science, 2nd ed. [in Russian], Fizmatlit, Moscow (2010).

10. V.V. Tuchin, “Light scattering study of tissues,” Physics – Uspekhi 40 (5), 495–515 (1997). Crossref

11. V.V. Tuchin (ed.), Handbook of Photonics for Biomedical Science, CRC Press, Taylor & Francis Group, London (2010).

12. A. Wax and V. Backman (eds.), Biomedical Applications of Light Scattering, McGraw-Hill, NY (2010).

13. D.A. Boas, C. Pitris, and N. Ramanujam (eds.), Handbook of Biomedical Optics, CRC Press, Taylor & Francis Group, London (2011).

14. V.V. Tuchin, Dictionary of Biomedical Optics and Biophotonics, SPIE Press, Bellingham, WA (2012).

15. J. Popp, V. Tuchin, A. Chiou, and S.H. Heinemann (eds.), Handbook of Biophotonics: Basics and Techniques, vol.1, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2011).

16. J. Popp, V.V. Tuchin, A. Chiou, and S.H. Heinemann (eds.), Handbook of Biophotonics: Photonics for Health Care, vol. 2, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2011).

17. A.N. Bashkatov, E.A. Genina, and V.V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).

18. S. L. Jacques, “Optical properties of biological tissues: A review,” Phys. Med. Biol. 58, R37–R61 (2013).

19. R.K. Wang and V.V. Tuchin, Advanced Biophotonics: Tissue Optical Sectioning, CRC Press, Taylor & Francis Group, London (2013).

20. S. L. Jacques, “Probing the nano-, micro-, and meso-scale structures of biological tissues using light scattering,” International Conference on Laser Applications in Life Sciences (LALS), June 29 - July 2, Ulm, Germany (2014).

21. S. L. Jacques, “Quick analysis of optical spectra to quantify epidermal melanin and papillary dermal blood content of skin,” J. Biophotonics 8(4), 309–316 (2015). Crossref

22. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, NY (1983).

23. M.I. Mishchenko, L.D. Travis, and A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, Cambridge Univ. Press, Cambridge (2002).

24. R.G. Johnston, S.B. Singham, and G.C. Salzman, “Polarized light scattering” in Comments Mol. Cell. Biophys. 5(3), Gordon and Breach Sci. Publ. Inc., 171–192 (1988).

25. K. Frank and M. Kessler (eds.), Quantitative Spectroscopy in Tissue, pmi Verlag, Frankfurt am Main (1992).

26. H. C. van de Hulst, Light Scattering by Small Particles, Wiley, New York (1957); reprint, Dover, NY (1981); Multiple Light Scattering. Tables, Formulas and Applications, Academic Press, NY (1980).

27. G. C. Beck, N. Akgun, A. Rück, R. Steiner, “Design and characterization of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13,160–171 (1998).

28. V. V. Tuchin (ed.), Handbook of Optical Biomedical Diagnostics, SPIE Press, Bellingham, Washington (2002).

29. E.P. Zege, A.P. Ivanov, and I.L. Katsev, Image Transfer through a Scattering Medium, Springer-Verlag, NY (1991).

30. A. Ishimaru, Wave Propagation and Scattering in Random Media, IEEE Press, NY (1997). Crossref

31. M.I. Mishchenko, L.D. Travis, and A.A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering, Cambridge University Press, NY (2006).

32. A.A. Kokhanovsky (ed.), Light Scattering Reviews 4: Single Light Scattering and Radiative Transfer, Springer, Heidelberg (2009).

33. A.A. Kokhanovsky (ed.), Light Scattering Reviews 5: Single Light Scattering and Radiative Transfer, Springer, Heidelberg (2010).

34. R. Graaff, J.G. Aarnoudse, J.R. Zijp, P.M.A. Sloot, F.F.M. de Mul, J. Greve, and M.H. Koelink, “Reduced light scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992). Crossref

35. G. Müller, B. Chance, R. Alfano, et al. (eds.), Medical Optical Tomography: Functional Imaging and Monitoring, SPIE Inst. Adv. Opt. Techn. IS11, SPIE Press, Bellingham, WA (1993).

36. M.S. Patterson, “Noninvasive measurement of tissue optical properties: current status and future prospects” in Comments Mol. Cell. Biophys. 8, Gordon and Breach Sci. Publ. Inc., 387–417 (1995).

37. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69(10), 3457–3481 (1998). Crossref

38. O. Minet, G. Müller, and J. Beuthan (eds.), Selected Papers on Optical Tomography, Fundamentals and Applications in Medicine, MS147, SPIE Press, Bellingham, WA (1998).

39. J.C. Dainty (ed.), Laser Speckle and Related Phenomena, 2nd ed., Springer-Verlag, NY (1984).

40. J.W. Goodman, Statistical Optics, Wiley-Interscience Publication, NY, et al. (1985).

41. J.W. Goodman, Introduction to Fourier Optics, McGraw-Hill, NY (1996).

42. J.W. Goodman, Speckle Phenomena in Optics: Theory and Applications, Roberts & Co., Englewood, CO (2007).

43. P. Zakharov and F. Scheffold, “Advances in dynamic light scattering techniques” in Light Scattering Reviews 4: Single Light Scattering and Radiative Transfer, A.A. Kokhanovsky (ed.), Springer, Heidelberg, 433–468 (2009).

44. A.P. Shepherd and P.Å. Öberg (eds.), Laser Doppler Blood Flowmetry, Kluwer, Boston (1990).

45. B.J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics, Dover Publications, Inc., Mineola, NY (2000).

46. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010). Crossref

47. V.V. Tuchin (ed.), Advanced Optical Cytometry: Methods and Disease Diagnoses, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2011).

48. V.V. Tuchin (ed.), Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring and Material Science, 2nd ed., 2 vols., Berlin, Heidelberg, N.Y., Springer-Verlag (2013).

49. M. J. Leahy (ed.), Microcirculation Imaging, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2012).

50. S. M. Daly and M. J. Leahy, “‘Go with the flow:’ A review of methods and advancements in blood flow imaging,” J. Biophotonics, 6(3), 217–255 (2013). Crossref

51. N. Yokoi, Y. Shimatani, M. Kyoso, H. Funamizu, and Y. Aizu, “Imaging of blood flow and blood concentration change in a frame rate using laser speckle: Methods for image analysis,” Opt. Laser Tech. 64, 352–362 (2014). Crossref

52. H.M. Varma, C.P. Valdes, A.K. Kristoffersen, J.P. Culver, and T. Durduran, “Speckle contrast optical tomography: A new method for deep tissue three-dimensional tomography of blood flow,” Biomed. Opt. Express 5 (4), 1275-1289 (2014). Crossref

53. P. Farzam, T. Durduran, “Multidistance diffuse correlation spectroscopy for simultaneous estimation of blood flow index and optical properties,” J. Biomed. Opt. 20 (5), 055001-055001(2015). Crossref

54. D. A. Zimnyakov, J. D. Briers, and V. V. Tuchin, “Speckle technologies for monitoring and imaging of tissuelike phantoms,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin (ed.), SPIE Press, Bellingham, Washington, 987–1036 (2002).

55. I. V. Fedosov and V. V. Tuchin, “Laser Doppler and speckle techniques for bioflow measurements,” in Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring and Material Science, 2nd ed. , V. V. Tuchin (ed.), Springer-Verlag Berlin, Heidelberg, NY, 487–564 (2013).

56. A.V. Priezzhev, V.V. Tuchin, and L.P. Shubochkin, Laser Diagnostics in Biology and Medicine [in Russian], Nauka, Moscow (1989).

57. G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” in Methods in Nano Cell Biology, B. P. Jena (ed.), Methods in Cell Biology 90, Academic Press, NY, 87–115 (2008).

58. G. Popescu, Quantitative Phase Imaging of Cells and Tissues, McGraw-Hill, NY (2011).

59. V. P. Ryabukho “Diffraction of interference fields on random phase objects,” in Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, V. V. Tuchin (ed.), Kluwer Academic Publishers, Boston, 235–318 (2004).

60. A. Serov and T. Lasser, “High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor,” Opt. Express 13(17), 6416–6428 (2005). Crossref

61. I. V. Meglinski and V. V. Tuchin, “Diffusing wave spectroscopy: Application for blood flow diagnostics,” in Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring and Material Science, 2nd ed., V. V. Tuchin (ed.), Springer-Verlag, Berlin, Heidelberg, NY, 149–167.

62. W.A. Shurkliff, Polarized Light. Production and Use, Harvard Univ., Cambridge, Mass (1962).

63. W.A. Shurkliff and S.S. Ballard, Polarized Light, Van Nostrand, Princeton (1964).

64. D.S. Kliger, J.W. Lewis, and C.E. Randall, Polarized Light in Optics and Spectroscopy, Academic, Boston (1990).

65. E. Collet, Polarized Light. Fundamentals and Applications, Dekker, NY (1993).

66. R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light, Elsevier Science, Amsterdam (1994).

67. A.Z. Dolginov, Yu.N. Gnedin, and N.A. Silant’ev, Propagation and Polarization of Radiation in Cosmic Media, Gordon and Breach, Basel (1995).

68. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach, Wiley, NY (1998).

69. M.I. Mishchenko, J.W. Hovenier, and L.D. Travis (eds.), Light Scattering by Nonspherical Particles, Academic Press, San Diego (2000).

70. A.A. Kokhanovsky, Polarization Optics of Random Media. Springer-Verlag, Berlin, Heidelberg, NY (2003).

71. V.V. Tuchin, L.V. Wang, and D.A. Zimnyakov, Optical Polarization in Biomedical Applications, Springer, NY (2006).

72. L. V. Wang, G. L. Coté, and S. L. Jacques (eds.), “Special Section on Tissue Polarimetry,” J. Biomed. Opt. 7(3), 278–397 (2002).

73. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002). Crossref

74. J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005); part II, Opt. Express 13(25), 10392–10405 (2005).

75. N. Ghosh and I. A. Vitkin, “Concepts, challenges and applications of polarized light in biomedicine: A tutorial review,” J. Biomed. Opt. 16(11), 110801-1–29 (2010).

76. B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8 (4), 317–323 (2015). Crossref

77. V. V. Tuchin,“Optical immersion as a new tool to control optical properties of tissues and blood,” Laser Phys. 15(8), 1109–1136 (2005).

78. V. V. Tuchin, “Optical clearing of tissue and blood using immersion method,” J. Phys. D: Appl. Phys. 38, 2497–2518 (2005). Crossref

79. V.V. Tuchin, Optical Clearing of Tissues and Blood, PM 154, SPIE Press, Bellingham, WA (2006).

80. V.V. Tuchin, “A clear vision for laser diagnostics,” IEEE J. Select. Tops. Quant. Electr. 13(6), 1621–1628 (2007). Crossref

81. V.V. Tuchin (ed.), Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, CRC Press, Taylor & Francis Group, London (2009).

82. E.A. Genina, A.N. Bashkatov, and V.V. Tuchin, “Tissue optical immersion clearing,” Expert Rev. Med. Devices 7(6), 825–842 (2010). Crossref

83. E.A. Genina, A.N. Bashkatov, K.V. Larin, and V.V. Tuchin, “Light–tissue interaction at optical clearing” in Laser Imaging and Manipulation in Cell Biology, F.S. Pavone (ed.) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 115–164 (2010).

84. K.V. Larin, M.G. Ghosn, A.N. Bashkatov, E.A. Genina, N.A. Trunina, and V.V. Tuchin, “Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion,” IEEE J. Select. Tops. Quant. Electr. 18 (3) 1244–1259 (2012). Crossref

85. D. Zhu, K.V. Larin, Q. Luo, and V.V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013). Crossref

86. D. Zhu, Q. Luo, and V.V. Tuchin, “Tissue Optical Clearing,” in Advanced Biophotonics: Tissue Optical Sectioning, R.K. Wang and V.V. Tuchin (eds.), CRC Press, Taylor & Francis Group, Boca Raton, London, NY, pp. 621–672 (2013).

87. R.K. Wang and V.V. Tuchin, “Optical coherence tomography: light scattering and imaging enhancement,” in Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring and Material Science, 2nd ed., V.V. Tuchin (ed.), Springer-Verlag, Berlin, Heidelberg, NY, 665–742 (2013).

88. J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: Tissue Optical Clearing Window for Blood Flow Monitoring (Invited Paper),” IEEE J. Select. Tops Quant. Electr. 20 (2), 6801112-1–12 (2014).

89. O. Nadiarnykh and P.J. Campagnola, “SHG and optical clearing,” in Second Harmonic Generation Imaging, F.S. Pavone and P.J. Campagnola (eds.), CRC Press, Taylor & Francis Group, Boca Raton, London, NY, 169−189 (2014).

90. E.A. Genina, A.N. Bashkatov, Yu.P. Sinichkin, I.Yu. Yanina, V.V. Tuchin, “Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy [Review],” J. of Biomedical Photonics & Eng., 1(1), 22−58 (2015).

91. X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics, Springer, NY (2010). Crossref

92. M.M. Nazarov, A.P. Shkurinov, V.V. Tuchin, and X.-C. Zhang, “Terahertz tissue spectroscopy and imaging” in Handbook of Photonics for Biomedical Science, V.V. Tuchin (ed.), CRC Press, Taylor & Francis Group, London, 591–617 (2010).






© 2014-2017 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+