Compact optical tweezer with the capability of dynamic control

Alexander Korobtsov
Lebedev Physical Institute, Samara, Russia

Svetlana Kotova
Lebedev Physical Institute, Samara, Russia,
Samara State Aerospace University (SSAU), Russia

Nikolay Losevsky
Lebedev Physical Institute, Samara, Russia,
Samara State Aerospace University (SSAU), Russia

Aleksandra M. Mayorova (Login required)
Lebedev Physical Institute, Samara, Russia,
Samara State Aerospace University (SSAU), Russia

Sergey Samagin
Lebedev Physical Institute, Samara, Russia


Paper #2473 received 2015.06.02; revised manuscript received 2015.06.19; accepted for publication 2015.06.25; published online 2015.06.30.

DOI: 10.18287/jbpe-2015-1-2-154

Abstract

The extension of capabilities towards the formation of controlled complex-shaped optical traps is demonstrated for the compact laser tweezer based on the four-channel LC modulator. The experimental results on the yeast cell manipulation, including the particles larger than 10 μm, are presented. The capture and confinement of the object with the dimensions 37 μm × 13 μm was realized by means of the use of the ellipse-shaped trap. The maximal escape velocity of this object was about 20 μm/s.

Keywords

compact laser tweezers; optical manipulation; liquid crystal modulators; biological microobjects

Full Text:

PDF

References


1. T.C. Bakker Schut, E.F. Schipper, B.G. de Grooth and J. Greve “Optical-trapping micromanipulation using 780-nm diode lasers” Optics Letters, 18 (6), 447-449, 1993. Crossref

2. R. Afzal and E. Treacy “Optical tweezers using a diode laser” Rev. Sci. Instrum., 63 ( 4), 2157-2163, 1992. Crossref

3. S. Smith, S. Bhalotra, A. Brody, B. Brown, E. Boyda, and M. Prentiss “Inexpensive optical tweezers for undergraduate laboratories”, Am. J. Phys., 67 (1), 26-35, 1999. Crossref

4. A. Ashkin J. M. Dziedzic and T. Yamane “Optical trapping and manipulation of single cells using infrared laser beams”, Nature, 330, 769-771, 1987. Crossref

5. J. Bechhoefer and S. Wilson “Faster, cheaper, safer optical tweezers for the undergraduate laboratory” Am. J. Phys., 70 (4), 393-400, 2002. Crossref

6. M. Šery, Z. Lošt’ak, M. Kalman, P. Jakl, P. Zemanek “Compact laser tweezers”, Proc. of SPIE, 6609, 66090N, 2007.

7. Yu. Ogura, K. Kagawa, and J. Tanida “Optical manipulation of microscopic objects by means of vertical-cavity surface-emitting laser array sources”, Applied Optics, 40 (30), 5430-5435, 2001. Crossref

8. T. Suzuki, T. Maeda, O. Sasaki, S. Choi “Enhancement of optical gradient force employed in optical tweezers using a pulsed laser diode”, Conference Paper Optical Trapping Applications (Monterey, California, United States, April 4-6, 2011), OTMD4p.pdf, 2011.

9. T. Piñón, L. Hirst, J. Sharping “Fiber-Based Dual-Beam Optical Trapping System for Studying Lipid Vesicle Mechanics” in Optics in the Life Sciences, OSA Technical Digest (CD) (Optical Society of America, 2011), OTTuB2.pdf http://dx.doi.org/10.1364/OTA.2011.OTTuB2.

10. K. Taguchi, J. Okada, Y. Nomura and K. Tamura “Three-Dimensional Optical Trapping for Cell Isolation Using Tapered Fiber Probe by Dynamic Chemical Etching”, Journal of Physics: Conference Series 352, 012039 (doi:10.1088/1742-6596/352/1/012039), 2012.

11. K. Taguchi, S. Hirota, H. Nakayama, D. Kunugihara and Y. Mihara “Optical Manipulation of Symbiotic Chlorella in Paramecium Bursaria Using a Fiber Axicon Microlens” Journal of Physics: Conference Series 352, 012040, (doi:10.1088/1742-6596/352/1/012040), 2012.

12. K. Taguchi, H. Ueno, T. Hiramatsu and M. Ikeda “Optical trapping of dielectric particle and biological cell using optical fiber”, Electron Lett., 33, 413-414, 1997. Crossref

13. K. Taguchi and N. Watanabe “Single-beam optical fiber trap”, Journal of Physics: Conference Series, 61, 1137–1141, 2007.

14. Ch. Xie, M.A. Dinno, Y.-Q. Li “Near-infrared Raman spectroscopy of single optically trapped biological cells”, Optics Letters, 27 (4), 249-251, 2002. Crossref

15. R.W. Applegate Jr., J. Squier, T. Vestad, J. Oakey, and D.W.M. Marr “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars”, Optics Express, 12 (19), 4390-4398, 2004. Crossref

16. R.W. Applegate, J. Squier, T. Vestad, J. Oakey, and D.W.M. Marr “Fiber-focused diode bar optical trapping for microfluidic flow manipulation”, Applied Physics Letters, 92, 013904, 2008.

17. R.W. Applegate, Jr., J. Squier, T. Vestad, J. Oakey, D.W.M. Marr, P. Bado, M.A. Dugan, and A.A. Said “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping” Lab Chip. 6(3), 422-426, 2006. Crossref

18. R. Applegate Jr., D. Marr, J. Squier, and S. Graves “Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars”, Optics Express, 17 (19) 16731, 2009.

19. S. Cran-McGreehin, T. Krauss and K. Dholakia “Integrated monolithic optical manipulation”, Lab Chip, 6, 1122–1124, 2006. Crossref

20. F.C. Cheong, C.H. Sow, A.T.S.Wee, P. Shao, A.A. Bettiol, J.A. van Kan and F. Watt “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers” Appl. Phys. B 83, 121–125, 2006. Crossref

21. A.A. Ambardekar, Y.-Q. Li “Optical levitation and manipulation of stuck particles with pulsed optical tweezers”, Optics Letters, 30 (14), 1797-1799, 2005. Crossref

22. I. Sraj, D.W.M. Marr, and Ch.D. Eggleton “Linear diode laser bar optical stretchers for cell deformation”, Biomedical Optics Express 1 (2), 483-488, 2010. Crossref

23. I. Sraj, J. Chichester, E. Hoover, R. Jimenez, J. Squier, C.D. Eggleton, and D.W.M. Marr “Cell deformation cytometry using diode-bar optical stretchers”, J. Biomed. Opt., 15 (4), 047010-1, 2010. Crossref

24. Ch. Xie, Ch. Goodman, M.A. Dinno, and Y.-Q. Li “Real-time Raman spectroscopy of optically trapped living cells and organelles” Optics Express, 12 (25), 6208-6214, 2004. Crossref

25. W. Cheng, X. Hou, and F. Ye “Use of tapered amplifier diode laser for biological-friendly high-resolution optical trapping”, Optics Letters, 35 (17), 2988-2990, 2010. Crossref

26. H. Schneckenburger, A. Hendinger, R. Sailer, MH Gschwend , WS Strauss, M Bauer, K. Schütze “Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser”, J Biomed Opt., 5(1), 40-44, 2000. Crossref

27. T. Suzuki, T. Maeda, O. Sasaki, S. Choi “Enhancement of optical gradient force employed in optical tweezers using a pulsed laser diode” Conference Paper Optical Trapping Applications (Monterey, California United States April 4-6, 2011), 2011

28. Y.F. Chen, Y.P. Lan “Spontaneous pattern formation in a microchip laser excited by a doughnut pump profile”, Appl. Phys. B., 75, 453-456, 2002. Crossref

29. Y.F. Chen, Y.P. Lan “Transverse pattern formation of optical vortices in a microchip laser with a large Fresnel number”, Physical Review A, 65, 013802, 2001. Crossref

30. P. Genevet, S. Barland, M. Giudici, J.R. Tredicce “Bistable and Addressable Localized Vortices in Semiconductor Lasers”, Physical Review Letters, 104, 223902, 2010.

31. V. Voignier, J. Houlihan, J. R. O’Callaghan, C. Sailliot, and G. Huyet “Stabilization of self-focusing instability in wide-aperture semiconductor lasers”, Phys. Rev. A 65, 053807 2002.

32. J. Mukherjee; J G. McInerney “Lateral mode dynamics in high-power wide-aperture quantum dot laser” //Proc. SPIE 6468, Physics and Simulation of Optoelectronic Devices XV, 64681A (March 22, 2007); doi:10.1117/12.700691, 2007.

33. A.A. Krents, D.A. Anchikov “The vortex lattices in large-aperture lasers”, Izvestiya of Samara scientific center of the Russian Academy of Sciences, 14 (4), 201-205, 2012 (in Russian).

34. D.A. Anchikov, A.A. Krents, ?.V. Pahomov “Stability of transvers optical patterns in wide-aperture”, Izvestiya of Samara scientific center of the Russian Academy of Sciences, 15 (4), 99-103, 2013 (in Russian).

35. R. Skidanov, M. Rykov, G. Iannacchione and S. Krivoshlykov “The modification of laser beam for optimization of optical trap force characteristic”, Computer optics, 36 (3), 377-386, 2012 .

36. S. Fore, J. Chan, D. Taylor and T. Huser “Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus”, J. Opt., 13, 044021, 2011.

37. S. Kotova, V. Patlan and S. Samagin “Tunable liquid crystal focusing device: I. Theory”, Quantum Electron. 41, 58–64, 2011. Crossref

38. S. Kotova, V. Patlan and S. Samagin “Tunable liquid crystal focusing device: II. Experiment”, Quantum Electron., 41, 65–70, 2011. Crossref

39. S. Kotova, V. Patlan and S. Samagin “Focusing light into a line segment of arbitrary orientation using a four channel liquid crystal light modulator”, J. Opt., 15, 035706, 2013.

40. A. Korobtsov, S. Kotova, N. Losevsky, A. Mayorova, V. Patlan and S. Samagin “Optical trap formation with a four-channel liquid crystal light modulator”, J. Opt., 16, 035704, 2014.

41. A. Korobtsov, S. Kotova, N. Losevsky, A. Mayorova, and S. Samagin “Formation of contour optical traps with a four-channel liquid crystal focusator”, Quantum Electron. 44, 1157–1164, 2014.

42. S. Kotova, A. Mayorova and S. Samagin “Tunable 4-channel LC focusing device: summarized results and additional functional capabilities”, J. Opt., 17, 055602, 2015.

43. A. Korobtsov, S. Kotova, N. Losevsky, A. Mayorova, S. Samagin and V. Volostnikov “Capture of microscopic objects by contour optical traps formed by 4-channel liquid crystal modulator”, Journal of Physics: Conference Series, 605, 012007, 2015. Crossref

44. R.V. Skidanov, A.A. Morozov, A.P. Porfirev “Composite light beam and mixroexplosion for optical micromanipulation” Computer optics, 36 (3), 371-376, 2012 .






© 2014-2023 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+