Backscattering spectroscopy for assessing skin tumor

Valery P. Zakharov
Samara State Aerospace University (SSAU), Russia

Pavel E. Timchenko (Login required)
Samara State Aerospace University (SSAU), Russia

Elena V. Timchenko
Samara State Aerospace University (SSAU), Russia

Larisa A. Zherdeva
Samara State Aerospace University (SSAU), Russia

Sergey V. Kozlov
Samara State Medical University, Russia

Alexander A. Moryatov
Samara State Medical University, Russia


Paper #2489 received 2015.05.05; revised manuscript received 2015.06.19; accepted for publication 2015.06.25; published online 2015.06.30.

DOI: 10.18287/jbpe-2015-1-2-164

Abstract

The results of in vitro backscattering spectral studies of 7 nevuses and 27 samples of different skin cancer are presented. The pathology type classification in the two-dimensional phase space formed by the scattering indices at the wavelengths 560 nm, 650 nm, 700 nm, and 760 nm scaled to the healthy skin scattering coefficient value is proposed. It is shown that the sensitivity and specificity of differentiation between the benign and malignant tumors exceeds 86% and 96%, respectively, and their value for selecting melanoma among other malignant tumors falls by 5-8% due to partial overlap of classes in the phase space.

Keywords

Differential backscattering; discriminant analysis; tumor; noninvasive diagnostics; optical coefficient; melanoma; basal cell carcinoma; nevus

Full Text:

PDF

References


1. L.V. Wang, Skin cancer detection by spectroscopic oblique-incidence reflectometry: classification and physiological origins, Appl. Opt., №43, P.2643–2650 (2004). Crossref

2. A.V. Novik, Skin melanoma: novel approaches, Prakticheskaya onkologiya, No. 1 (12), P. 36–42 (2011).

3. M. Mogensen, G. B. Jemec, Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: a review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies, Dermatol Surg, V.33(10), P.1158–1174 (2007). Crossref

4. S.W. Fosko, W. Hu, T.F. Cook, et al. Positron emission tomography for basal cell carcinoma of the head and neck. Arch Dermatol; v.139, p. 1141–1146 (2003).

5. V.P. Zakharov, K.V. Larin, I.A. Bratchenko, Increasing the informativity of optical coherence tomography in skin pathology diagnistics ,” Proceedings of SSAU. 2(26), 232-239, (2011).

6. A. Alex, J. Weingast, B. Hofer, M. Eibl, M. Binder, H. Pehamberger, W. Drexler, B. Povazay, 3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers, Imaging Med, 6:653–674 (2011).

7. A. Scope, U. Mahmood, D.S. Gareau, M. Kenkre, J.A. Lieb, K.S. Nehal, M. Rajadhyaksha, In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins, Br J Dermatol, 163:1218–1228(2010). Crossref

8. J. Zhao, H. Lui, D.I. McLean and H. Zeng. Real-time Raman spectroscopy for noninvasive in vivo skin analysis and diagnosis, New developments in biomedical engineering 24, 455-474 (2010).

9. A. Garcia-Uribe, Jun Zou, M. Duvic, J.H. Cho-Vega, V.G. Prieto, L.V. Wang, In Vivo Diagnosis of Melanoma and Nonmelanoma Skin Cancer Using Oblique Incidence Diffuse Reflectance Spectrometry, Cancer Res; 72(11) June 1, p.2738-2745 (2012). Crossref

10. J. de Leeuw, N. van der Beek, W.D. Neugebauer, P. Bjerring, H.A. Neumann, Fluorescence detection and diagnosis of non-melanoma skin cancer at an early stage, Lasers Surg Med. v.41, 2, p.96-103 (2009). Crossref

11. V.P.Zakharov, I.A. Bratchenko, O.O. Myakinin, D.N. Artem’yev, D.V. Kornilin, S.V. Kozlov, A.A. Moryatov, Multimodal diagnostics and imaging of oncological pathologies, Quantum Electron, V.44, No.8, P. 726–731 (2014)

12. A. Pradhan, B. B. Das, K. M. Yoo, R. R. Alfano, J. Cleary, R. Prudente, and E. Celmer, Time-resolved UV photoexcited fluorescence kinetics from malignant and non-malignant breast tissues, Proc. SPIE Conference, 1599, – P.81–84 (1992).

13. C. Y. Wang, H. M. Chen, C. P. Chiang, C. You, and T. C. Hsiao, Time-resolved autofluorescence spectroscopy for classifying normal and premalignant oral tissues, Lasers Surg. Med, V.37(1), P.37–45 (2005). Crossref

14. P. V. Butte, B. K. Pikul, A. Hever, W. H. Yong, K. L. Black, and L. Marcu, Diagnosis of meningioma by time resolved fluorescence spectroscopy, J. Biomed. Opt, V.10(6), 064026 (2005). Crossref

15. N. P. Galletly, J. Mcginty, C. Dunsby, F. Teixeira, J.Requejo-Isidro, I, Munro, D. S. Elson, M. A. A. Neil et al., Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin, Br. J. Dermatol, V.159(1), P.152–161 (2008). Crossref

16. J. Mcginty, N. P. Galletly, C. Dunsby, I. Munro, D. S.Elson et al., Wide-field fluorescence lifetime imaging of cancer, Biomed. Opt. Express, V.1(2), P.627–640 (2010). Crossref

17. R. Cicchi, A. Crisci, A. Cosci, G. Nesi, D. Kapsokalyvas, S. Giancane, M. Carini, and F. S. Pavone, Time- and Spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ, Opt. Express, V.18(4), P.3840–3849 (2010). Crossref

18. X. He, K. Wang, Z. Cheng, In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes, Nanomed Nanobiotechnol, 2:349–366 (2010)

19. G. Wagni`eres, J. Mizeret, A. Strudzinski, H. Van den Bergh, Frequence-domain fluorescence lifetime imaging for endoscopic clinical cancer photodetection: apparatus design and preliminary results, J. Fluoresc, V. 7, P. 75-83 (1997). Crossref

20. A. Garcia-Uribe, E. B. Smith, M. Duvic, L.V. Wang, White light oblique-incidence diffuse reflectance spectroscopy for classification of in vivo pigmented skin lesions, Proc. SPIE 6435, 64350L (2007).

21. I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, A Berzina, Towards non-contact skin melanoma selection by multi-spectral imaging analysis J. Biomed. Opt. 16(6), 1-3 (2011) Crossref

22. A. J. Thompson et.al., In vivo measurements of diffuse reflectance and time-resolved autofluorescence emission spectra of basal cell carcinomas, J. Biophotonics 5, No. 3, 240–254 (2012). Crossref

23. P.J. Matts, P.J. Dykes and R. Marks, The distribution of melanin in skin determined in vivo, British Association of Dermatologists. British Journal of Dermatology. 156, p.620–628 (2007). Crossref

24. G.Z.A. Dimou, I. Bassukas, D. Galaris, A.T.E. Kaxiras, Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection, Journal of Biomedical Optics, V.13 (1), 014017-(1-8) (2008). Crossref

25. R. O. Duda, P. E. Hart and D. G. Stork, “Pattern Classification, 2nd Edition,” Wiley. ISBN 978-0-471-05669-0(2000).






© 2014-2017 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+