Malignant melanoma and basal cell carcinoma detection with 457 nm laser-induced fluorescence

Ivan A. Bratchenko (Login required)
Laser and biotechnical systems department, Samara State Aerospace University, Russia

Dmitry N. Artemyev
Laser and biotechnical systems department, Samara State Aerospace University, Russia

Oleg O. Myakinin
Laser and biotechnical systems department, Samara State Aerospace University, Russia

Maria G. Vrakova
Laser and biotechnical systems department, Samara State Aerospace University, Russia

Kirill S. Shpuntenko
Laser and biotechnical systems department, Samara State Aerospace University, Russia

Alexander A. Moryatov
Oncology Department, Samara State Medical University, Russia

Sergey V. Kozlov
Oncology Department, Samara State Medical University, Russia

Valery P. Zakharov
Laser and biotechnical systems department, Samara State Aerospace University, Russia

Paper #2645 received 2015.10.02; revised manuscript received 2015.11.05; accepted for publication 2015.11.05; published online 2015.11.19.

DOI: 10.18287/jbpe-2015-1-3-180


In this study we propose a several methods of autofluorescence signal processing for skin cancers control. Autofluorescence spectra of normal skin and oncological pathologies stimulated by 457 nm laser were registered for 56 skin tissue samples. Spectra of 9 melanomas and 19 basal cell carcinomas were registered ex vivo. Estimation of tissue malignancy was made on the basis of autofluorescence spectra intensity and shifts of local maxima in 570 – 590 nm and 610 – 670 nm area. Separation of melanomas and basal cell carcinomas was performed with linear discriminant analysis. Overall accuracy of tissue type determining in current study reached 82.1%.


autofluorescence; spectroscopy; cancer detection; malignant melanoma; basal cell carcinoma; discriminant analysis

Full Text:



1. A. D. Kaprin, V. V. Starinsky, and G. V. Petrova, Malignant Tumors in Russia 2013 (Morbidity and Mortality), Russia Ministry of health, Moscow, 250 (2015).

2. P. Boyle, and B. Levin, World Cancer Report 2008, International Agency for Research on Cancer, Lyon (2008). ISBN 978 92 832 0423 7.

3. H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491-2500 (2012). Crossref

4. J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Real-time Raman spectroscopy for noninvasive in vivo skin analysis and diagnosis,” New developments in biomedical engineering 24, 455-474 (2010).

5. V. P. Zakharov, I. A. Bratchenko, S. V. Kozlov, A. A. Moryatov, O. O. Myakinin, and D. N. Artemyev, “Two-step Raman spectroscopy method for tumor diagnosis,” Proc. SPIE 9129, 91293V (2014).

6. V. P. Zakharov, I. A. Bratchenko, O. O. Myakinin, D. N. Artemyev, Y. A. Khristoforova, S. V. Kozlov, and

7. A. A. Moryatov, “Combined Raman spectroscopy and autofluoresence imaging method for in vivo skin tumor diagnosis,” Proc. SPIE 9198, 919804 (2014). Crossref

8. V. P. Zakharov, I. A. Bratchenko, D. N. Artemyev, O. O. Myakinin, D. V. Kornilin, S. V. Kozlov, and

9. A. A. Moryatov, “Comparative analysis of combined spectral and optical tomography methods for detection of skin and lung cancers,” Journal of Biomedical Optics 20(2), 025003 (2015). Crossref

10. E. Borisova, E. Pavlova, T. Kundurjiev, P. Troyanova, T. Genova, and L. Avramov, “Light-induced autofluorescence and diffuse reflectance spectroscopy in clinical diagnosis of skin cancer,” Proc. SPIE 9129, 91291O (2014).

11. S. Wang, J. Zhao, H. Lui, Q. He, and H. Zeng, “In vivo Near-infrared Autofluorescence Imaging of Pigmented Skin Lesions: Methods, Technical Improvements and Preliminary Clinical Results,” Skin Research and Technology 19, 20–26 (2013). Crossref

12. M. E. Darvin, N. N. Brandt, and J. Lademann, “Photobleaching as a method of increasing the accuracy in measuring carotenoid concentration in human skin by Raman spectroscopy,” Optics and Spectroscopy 109(2), 205-210 (2010). Crossref

13. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed., Wiley (2001). ISBN: 978-0-471-05669-0.

14. I. A. Novikov, Y. O. Grusha, and N. P. Kiryshchenkova, “Autofluorescence diagnostics of skin and mucosal tumors,” Annals of ophthalmology 129(5), 147-153 (2013).

15. K. S. Litvinova, D. A. Rogatkin, O. A. Bychenkov, and V. I. Shumskiy, “Chronic Hypoxia as a Factor of Enhanced Autofluorescence of Endogenous Porphyrins in Soft Biological Tissues,” Proc. SPIE 7547, 7547-0D (2010).

16. M-A. Mycek, and B.W. Pogue, Handbook of biomedical fluorescence, Marcel Dekker Inc., New York (2003). ISSN: 1018-8665.

17. K. Konig, H. Meyer, and H. Schneckenburger, “The Study of Endogenous Porphyrins in Human Skin and Their Potential for Photodynamic Therapy by Laser Induced Fluorescence Spectroscopy,” Lasers in Medical Science 8, 127-132 (1993). Crossref

18. A. Pappas, “Epidermal surface lipids,” Dermatoendocrinol 1(2), 72–76 (2009).

19. D. L. Fox. Biochromy, Natural Coloration of Living Things, University of California Press, Berkeley (1979). ISBN: 9780521105316.

20. I. Seo, S. H. Tseng, G. O. Cula, P. R. Bargo, and N. Kollias, “Fluorescence spectroscopy for endogenous porphyrins in human facial skin,” Proc. SPIE 7161, 716103-1 (2009).

21. M. Shu, S. Kuo, Y. Wang, Y. Jiang, Y.-T. Liu, R. L. Gallo, C.-M. Huang, “Porphyrin Metabolisms in Human Skin Commensal Propionibacterium acnes Bacteria: Potential Application to Monitor Human Radiation Risk,” Curr Med Chem 20(4), 562–568 (2013).

22. M. M. H. El-Sharabasy, A. M. El-Wasee, M. M. Hafez, and S. A. Salim, “Porphyrin metabolism in some malignant diseases,” Br. J. Cancer 65, 409-411 (1992). Crossref

23. N. Rajaram, J. S. Reichenberg, and J. W. Tunnell, “Pilot clinical study for quantitative spectral diagnosis of nonmelanoma skin cancer,” Lasers Surg Med, 42(10), 716–727 (2010). Crossref

24. E. G. Borisova, L. P. Angelova, and E. P. Pavlova, “Endogenous and Exogenous Fluorescence Skin Cancer Diagnostics for Clinical Applications,” IEEE J of Selected Topics in Quantuum Electronics, 20(2), 7100412 (2014).

25. Z. Huang, H. Lui, D. I. McLean, M. Korbelik, and H. Zeng, “Raman Spectroscopy in Combination with Background Near-infrared Autofluorescence Enhances the In Vivo Assessment of Malignant Tissues,” Photochemistry and Photobiology 81(5), 1219-1226 (2005).

© 2014-2017 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+