The stress-related changes in the cerebral blood flow in newborn rats with intracranial hemorrhage: metabolic and endothelial mechanisms

Olga Sindeeva (Login required)
National Research Saratov State University, Russia

Ekaterina Borisova
Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Arkady Abdurashitov
National Research Saratov State University, Russia

Ekaterina Zhinchenko
National Research Saratov State University, Russia

Artem Gekalyuk
National Research Saratov State University, Russia

Maria Ulanova
National Research Saratov State University, Russia

Aly Esmat Sharif
National Research Saratov State University, Russia

Victoria Razubaeva
National Research Saratov State University, Russia

Sergey Serov
National Research Saratov State University, Russia

Ludmila Yankovskaya
Grodno State Medical University, Belorus

Valery V. Tuchin
National Research Saratov State University, Russia
Laboratory of Biophotonics, Tomsk State University, Russia

Oxana Semyachkina-Glushkovskaya
National Research Saratov State University, Russia


Paper #2804 received 2015.12.10; revised manuscript received 2015.12.30; accepted for publication 2015.12.31; published online 2016.02.02.

DOI: 10.18287/JBPE-2015-1-4-248

Abstract

Neonatal brain hemorrhages is a major problem of future generation’s health due to the high rate of cognitive disability of newborns after vascular catastrophes in the brain. Despite the public health impact of neonatal brain hemorrhages, the mechanisms underlying in these pathological processes remain unknown. Here, using a model of sound-stress-induced brain hemorrhages (per diapedesis, no per rhexis) in newborn rats and optical methods, we found that brain hemorrhages in newborn rats are accompanied by the increase in perfusion of brain tissues, which closely associated with reducing of cerebral oxygenation and increasing of nitric oxide production in both the brain tissues and blood. We assume that nitric oxide contributes the dilation of cerebral vessels during hypoxia and the increasing of cerebral blood flow in newborn rats with brain hemorrhages. Hypoxic-hyperperfusion during stress-related hemorrhages in newborn animals can be an important protective mechanism against anoxia and critical changes in cerebral hemodynamics.

Keywords

speckle laser contrast imaging; oxygen saturation; stress-related intracranial hemorrhages; hypoxia; nitric oxide

Full Text:

PDF

References


1. V. J. Rooks, J. P. Eaton, L. Ruess, G. W. Petermann, J. Keck-Wherley, and R. C. Pedersen, “Prevalence and evolution of intracranial hemorrhage in asymptomatic term infants,” AJNR Am J Neuroradiol 29(6), 1082-1089 (2008). Crossref

2. T. Takenouchi, E. Kasdorf, and M. Engel, “Changing pattern of perinatal brain injury in term infants in recent years,” Pediatr Neurol 46(2), 106-110 (2012). Crossref

3. A. J. Brouwer, F. Groenendaal, and C. Koopman, “Intracranial hemorrhage in full-term newborns: a hospital-based cohort study,” Neuroradiol 52(6), 567-576 (2010). Crossref

4. S. Siu, N. S. Kwong, and K. T. So, “A 10-year Review of intracranial hemorrhage in term neonates,” HK J Peadiatr (new series) 11(2), 140-146 (2006).

5. B. S. Jhawar, A. Ranger, D. A. Steven, and R. F. Del Maestro, “A follow-up study of infants with intracranial hemorrhage at full-term,” Can J Neurol Sci 32(3), 332-339 (2005). Crossref

6. S. N. Gupta, A. M. Kechli, and U. S. Kanamalla, “Intracranial hemorrhage in term newborns: management and outcomes,” Pediatr Neurol. 40(1), 1-12 (2009). Crossref

7. E. H. Whitby, P. H. Griffiths, S. Rutter, M. F. Smith, A. Spriqq, P. Ohadike, N. P. Davies, A. S. Rigby, and M. N. Paley, “Frequency and natural history of subdural heamorrhages in babies and relation to obstetric factor,” Lancet 363(9412), 846-851 (2004). Crossref

8. C. B. Looney, J. K. Smith, L. H. Merck, H. M. Wolfe, N. C. Chescheir, R. M. Hammer, and J. H. Gilmore, “Intracranial hemorrhage in asymptomatic neonates: prevalence on MR images and relationship to obstetric and neonatal risk factors,” Radiology 242(2), 535-541 (2007). Crossref

9. S. Maccari, M. Darnaudery, S. Morley-Fletcher, A. R. Zuena, C. Cinque, and O. Van Reeth, “Prenatal stress and longterm consequences: implications of glucocorticoid hormones,” Neurosci. Biobehav 27(1-2), 119–127 (2003).

10. C. Mirescu, J. D. Peters, and E. Gould, “Early life experience alters response of adult neurogenesis to stress,” Nat. Neurosci 7(8), 841–846 (2004). Crossref

11. P. Ballabh, “Intraventricular hemorrhage in premature infants: mechanism of disease,” Pediatr Res 67(1), 1-8 (2010). Crossref

12. O. Semyachkina-Glushkovskaya, T. Anishchenko, S. Kapralov, R. Novikov, and K. Skvorcov, “Sex differences in cardiovascular control by nitric oxide in normotensive and hypertensive rats at rest and during stress,” Health 2(8), 897-905 (2010). Crossref

13. T. G. Anishenko, O. V. Semyachkina-Glushkovskaya, and V. A. Berdnikova “Effect of age and sex on renal hypertension and concentration of nitric oxide in the blood of albino rats,” Bulletin of Experimental Biology and Medicine 149(1), 1-4 (2010). Crossref

14. R. Hlatky, J. C. Goodman, A. B. Valadka, and C. S. Robertson, “Role of Nitric Oxide in Cerebral Blood Flow Abnormalities After Traumatic Brain Injury,” Journal of Cerebral Blood Flow & Metabolism 23(5), 582-588 (2003). Crossref

15. P. J. Goadsby, H. Kaube, and H. L. Hoskin, “Nitric oxide synthesis couples cerebral blood flow and metabolism,” Brain Res 595(1), 167–170 (1992). Crossref

16. C. Iadecola, and F. Zhang, “Permissive and obligatory roles of NO in cerebrovascular responses to hypercapnia and acetylcholine,” Am J Physiol 271(4 Pt.2), R990–R1001 (1996).

17. Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Institute for Laboratory Animal Research, Division on Earth and Life Studies, National Research Council of the National Academies, “Guide for the care and use of laboratory animals. 8th edition,” Washington, The National Academies Press (2011).

18. O. Semyachkina-Glushkovskaya, A. Pavlov, J. Kurths, E. Borisova, A. Gisbrecht, O. Sindeeva, A. Abdurashitov, A. Shirokov, N. Navolokin, E. Zinchenko, A. Gekalyuk, M. Ulanova, D. Zhu, Q. Luo, and V. Tuchin, “Optical monitoring of stress-related changes in the brain tissues and vessels associated with hemorrhagic stroke in newborn rats,” Biomedical Optics Express 6(10), 4088-4097 (2015). Crossref

19. O. Semyachkina-Glushkovskaya, V. Lychagov, O. Bibikova, I. Semyachkin-Glushkovskiy, S. Sindeev, M. Kassim, H. Braun, F. Al-Fatle, L. Al Hassani, and V. Tuchin, “The experimental study of stress-related pathological changes in cerebral venous blood flow in newborn rats assessed by DOCT,” Journal of Innovative Optical Health Science 6(3), 1-9 (2013).

20. A. Pavlov, O. Semyachkina-Glushkovskaya, Z. Yang, O. Bibikova, O. Pavlova., Q. Huang, D. Zhu, P. Li, V. Tuchin, and Q. Luo “Multiresolution of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: adrenorelated vasorelaxation,” Physiol. Meas 35(10), 1983-1999 (2014). Crossref

21. A. Abdurashitov, V. Lychagov, O. Sindeeva, O. Semyachkina-Glushkovskaya, and V. Tuchin, “Histogram analysis of laser speckle contrast image for cerebral blood flow monitoring,” Frontiers of Optoelectronics 8(2), 187-194 (2015). Crossref

22. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Annals of biomedical engineering 40(2), 367-377 (2012).

23. F. Domoki, D. Zölei, O. Oláh, V. Tóth-Sz?ki, B. Hopp, F. Bari, and T. Smausz, “Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets,” Microvascular research 83(3), 311-317 (2012). Crossref

24. N. Liu, X. Cui, D. M. Bryant, G. H. Glover, and A. L. Reiss, “Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy,” Biomed. Opt. Express 6(3), 1074-1089 (2015). Crossref

25. T. Alderliesten, P. M. Lemmers, J. J. Smarius, R. E. van de Vosse, W. Baerts, and F. van Bel, “Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage,” J. Pediatr 162(4), 698-704 (2013). Crossref

26. G. A. Taylor, “New concepts in the pathogenesis of germinal matrix intraparenchymal hemorrhage in premature infants,” AJNR Am. J. Neuroradiol 18(2), 231-232 (1997).

27. G. A. Taylor, W. H. Trescher, M. V. Johnston, and R. J. Traysman, “Experimental neural injury in the newborn lamb: a comparison of NMDA receptor blockade and nitric oxide synthesis inhibition on lesion size and cerebral hyperemia,” Pediatr Res 38(5), 644-651 (1995). Crossref

28. G. Hambleton, and J. S. Wigglesworth, “Origin of intraventricular hemorrhage in the preterm infant,” Arch Dis Child 51(9), 651-659 (1976). Crossref

29. J. M. Valdueza, F. Doepp, S. J. Schreiber, B. W. van Oosten, K. Schmierer, F. Paul, and M. P. Wattjes, “What went wrong? The flawed concept of cerebrospinal venous insufficiency,” J. Cereb. Blood Flow Metab 33(5), 657-668 (2013). Crossref

30. A. Michoulas, S. N. Basheer, E. H. Roland, K. Poskitt, S. Miller, and A. Hill, “The role of hypoxia ischemia in term newborns with arterial stroke,” Pediatr Neurol 44(4), 254-258 (2011). Crossref

31. P. Bodin, and G. Burnstock, “Synergistic effect of acute hypoxia on flow-induced release of ATP from cultured endothelial cells,” Experientia 51(3), 256-259 (1995). Crossref

32. Y. Tomiyama, J. E. Brian, and M. M. Todd, “Cerebral blood flow during hemodilution and hypoxia in rats: role of ATP-sensitive potassium channels,” Stroke 30(9), 1942-1948 (1999).

33. T. Kiliç, and A. Akakin, “Anatomy of cerebral veins and sinuses,” Front Neurol Neurosci 23, 4-15 (2008). Crossref

34. J. Volpe, “Intracranial hemorrhage: Germinal matrix hemorrhage,” in Neurology of the Newborn, 5th edition Philadelphia, PA, Saunders Elsevier (2008). ISBN: 978-1-4160-3995-2.






© 2014-2017 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+