Assessing mechanical properties of tissue phantoms with non-contact optical coherence elastography and Michelson interferometric vibrometry

Jiasong Li
Department of Biomedical Engineering, University of Houston, TX, USA

Chih-Hao Liu
Department of Biomedical Engineering, University of Houston, TX, USA

Alexander Schill
Department of Biomedical Engineering, University of Houston, TX, USA

Manmohan Singh
Department of Biomedical Engineering, University of Houston, TX, USA

Achuth Nair
Department of Biomedical Engineering, University of Houston, TX, USA

Valery P. Zakharov
Department of Laser and Biotechnical Systems, Samara State Aerospace University, Russia

Kirill V. Larin (Login required)
Department of Biomedical Engineering, University of Houston, TX, USA
Department of Laser and Biotechnical Systems, Samara State Aerospace University, Russia
Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA

Paper #2809 received 2015.12.10; revised manuscript received 2015.12.25; accepted for publication 2015.12.30; published online 2016.02.01.

DOI: 10.18287/JBPE-2015-1-4-229


Purpose: Elastography is an emerging method for detecting the pathological changes in tissue biomechanical properties caused by various diseases. In this study, we have compared two methods of noncontact optical elastography for quantifying Young’s modulus of tissue-mimicking agar phantoms of various concentrations: a laser Michelson interferometric vibrometer and a phase-stabilized swept source optical coherence elastography system. Methods: The elasticity of the phantoms was estimated from the velocity of air-pulse induced elastic waves as measured by these two techniques. Results: The results show that both techniques were able to accurately assess the elasticity of the samples as compared to uniaxial mechanical compression testing. Conclusion: The laser Michelson interferometric vibrometer is significantly more cost-effective, but it cannot directly provide the elastic wave temporal profile, nor can it offer in-depth information.


optical coherence elastography; optical coherence tomography; laser Michelson interferometric vibrometer; elasticity; elastic wave; air-pulse; non-contact

Full Text:



1. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu Rev Biomed Eng 5, 57-78 (2003). Crossref

2. M. C. Chirambo, and D. Benezra, “Causes of blindness among students in blind school institutions in a developing country,” Br J Ophthalmol 60(9), 665-8 (1976). Crossref

3. M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Demb, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241-54 (2005).

4. S. J. Zieman, V. Melenovsky, and D. A. Kass, “Mechanisms, pathophysiology, and therapy of arterial stiffness,” Arterioscler Thromb Vasc Biol 25(5), 932-43 (2005). Crossref

5. J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry,” Am J Ophthalmol 143(1), 39-47 (2007). Crossref

6. K. J. Parker, and R. M. Lerner, “Sonoelasticity of organs: shear waves ring a bell,” J Ultrasound Med 11(8), 387-92 (1992).

7. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854-7 (1995). Crossref

8. M. D'Onofrio, A. Gallotti, and R.P. Mucelli, “Tissue quantification with acoustic radiation force impulse imaging: Measurement repeatability and normal values in the healthy liver,” AJR Am J Roentgenol 195(1), 132-6 (2010). Crossref

9. J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans Ultrason Ferroelectr Freq Control 51(4), 396-409 (2004). Crossref

10. G. Grabner, R. Eilmsteiner, C. Steindl, J. Ruckhofer, R. Mattioli, and W. Husinsky, “Dynamic corneal imaging,” J Cataract Refract Surg 31(1), 163-74 (2005). Crossref

11. K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O'Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21(1), 68-73 (2002). Crossref

12. M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Trans Med Imaging 28(12), 1881-93 (2009). Crossref

13. C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt Express 19(11), 10153-63 (2011). Crossref

14. S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phy Lett 10(7), 075605 (2013).

15. G. Scarcelli, and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt Express 20(8), 9197-202 (2012). Crossref

16. G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys J 101(6), 1539-45 (2011). Crossref

17. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt Express 3(6), 199-211 (1998).

18. S. Wang, and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J Biophotonics 8(4), 279-302 (2015). Crossref

19. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fojimoto, “Optical coherence tomography,” Science 254(5035), 1178-81 (1991).

20. M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography,” Opt Lett 26(8), 518-20 (2001). Crossref

21. S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt Lett 37(24), 5184-6 (2012). Crossref

22. X. Zhang, and J. F. Greenleaf, “Estimation of tissue's elasticity with surface wave speed,” J Acoust Soc Am 122(5), 2522-5 (2007). Crossref

23. Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys Med Biol 60(9), 3531-47 (2015). Crossref

24. L. Drain, The laser Doppler technique, John Wiley, Chichester, 186-194 (1980). ISBN: ISBN 0-471-27627-8.

25. P. Castellini, G. Revel, and E. Tomasini, “Laser Doppler vibrometry: a review of advances and applications,” The Shock and vibration digest 30(6), 443-456 (1998).

26. G. R. Ball, A. Huber, and R. Goode, “Scanning laser Doppler vibrometry of the middle ear ossicles,” Ear Nose Throat J 76(4), 213-222 (1997).

27. J. Soko?owski, K. Niemczyk, R. Bartoszewicz, K. Morawski, A. Bruzgielewicz, and B. Rygalska, “Round window's movability measurements with helping of LDV in evaluation of ossicular chain functioning,” Otolaryngol Pol 64(7), 77-80 (2010).

28. B. Felver, D. C. King, S. C. Lea, G. J. Price, and A. D. Walmsley, “Cavitation occurrence around ultrasonic dental scalers,” Ultrason Sonochem 16(5), 692-7 (2009). Crossref

29. S. C. Lea, A. D. Walmsley, P. J. Lumley, and G. Landini, “A new insight into the oscillation characteristics of endosonic files used in dentistry,” Phys Med Biol 49(10), 2095-102 (2004). Crossref

30. M. De Melis, U. Morbiducci, and L. Scalise, “Identification of cardiac events by optical Vibrocardiograpy: comparison with Phonocardiography,” Conf Proc IEEE Eng Med Biol Soc 2007, 2956-9 (2007).

31. U. Morbiducci, L. Scalise, M. De Melis, and M. Grigioni, “Optical vibrocardiography: a novel tool for the optical monitoring of cardiac activity,” Ann Biomed Eng 35(1), 45-58 (2007). Crossref

32. L. Scalise, and U. Morbiducci, “Non-contact cardiac monitoring from carotid artery using optical vibrocardiography,” Med Eng Phys 30(4), 490-7 (2008). Crossref

33. D. Rixen, and T. Schuurman, “In Vivo Measurement of the Human Thorax and Abdomen Surface Using Laser Vibrometry: A New Diagnostic Tool?” in Topics in Modal Analysis II, Volume 6, Springer, New York, 235-245 (2012).

34. Y. Yazicioglu, T. J. Royston, T. Spohnholtz, B. Martin, F. Loth, and H. S. Bassiouny, “Acoustic radiation from a fluid-filled, subsurface vascular tube with internal turbulent flow due to a constriction,” J Acoust Soc Am 118(2), 1193-209 (2005). Crossref

35. M. De Melis, U. Morbiducci, L. Scalise, E. P. Tomasini, D. Delbeke, R. Baets, L. M. Van Bortel, and P. Segers, “A noncontact approach for the evaluation of large artery stiffness: a preliminary study,” Am J Hypertens 21(12), 1280-3 (2008). Crossref

36. M. C. Dahl, P. A. Kramer, P. G. Reinhall, S. K. Benirschke, S. T. Hansen, and R. P. Ching, “The efficacy of using vibrometry to detect osteointegration of the Agility total ankle,” J Biomech 43(9), 1840-3 (2010). Crossref

37. P. Castellini, R. Huebner, and M. Pinotti, “Vibration measurement on artificial heart valve by laser doppler vibrometry,” Fifth International Conference on Vibration Measurements by Laser Techniques, International Society for Optics and Photonics (2002).

38. C. C. Rondini, G. L. Rossi, and L. Scalise, “Laser vibrometry and stress measurement by thermoelasticity on mechanical heart valve,” Sixth International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, International Society for Optics and Photonics (2004).

39. R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Physics 18(9), 1080-1086 (2008). Crossref

40. J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J Biomed Opt 18(12), 121503 (2013). Crossref

41. S. Wang, and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt Lett 39(1), 41-4 (2014). Crossref

42. S. Wang S, A. L. Lopez 3rd, Y. Morikawa, G. Tao, J. Li, I. V. Larina, J. F. Martin, and K. V. Larin, “Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography,” Biomed Opt Express 5(7), 1980-92 (2014).

43. A. R. Skovoroda, S. Y. Emelianov, and M. O'Donnell, “Tissue elasticity reconstruction based on ultrasonic displacement and strain images,” IEEE Trans Ultrason, Ferroelect, Freq Control 42(4), 747-765 (1995). Crossref

44. J. F. Doyle, Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms, 2nd ed., Springer-Verlag, New York (1997). ISBN: 0387949402.

45. K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci Rep 5, 15538 (2015).

46. S. Wang, and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed Opt Express 5(11), 3807-21 (2014). Crossref

47. M. Singh, C. Wu, C. H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Opt Lett 40(11), 2588-91 (2015). Crossref

48. R. W. Kirk, B. F. Kennedy, D. D. Sampson, and R. A. McLaughlin, “Near Video-Rate Optical Coherence Elastography by Acceleration With a Graphics Processing Unit,” J Lightwave Technol 33(16), 3481-3485 (2015). Crossref

© 2014-2020 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+