Diffuse optical mammotomography: state-of-the-art and prospects

Alexander B. Konovalov (Login required)
Russian Federal Nuclear Center – Zababakhin Institute of Applied Physics, Snezhinsk, Chelyabinsk Region, Russia

Elina A. Genina
National Research Saratov State University, Russia
National Research Tomsk State University, Russia

Alexey N. Bashkatov
National Research Saratov State University, Russia
National Research Tomsk State University, Russia


Paper #2827 received 2015.12.20; revised manuscript received 2016.05.03; accepted for publication 2016.05.23; published online 2016.06.30.

DOI: 10.18287/JBPE16.02.020202

Abstract

he principles of diffuse optical tomography (DOT) of tissues are presented. The DOT capabilities as a method of breast cancer diagnostics are analysed. The state-of-the-art of the DOT instrumentation and methodological base in application to solving the mammography problems are described. The significant contribution of Russian scientists to the development of the DOT methodology is emphasised. Basing on the results of the analysis, the authors expect the possibility of soonest entry of diffuse optical mammotomographs to the market of medical imaging instrumentation, and the capability of Russian researchers to take part in the competition for this market.

Keywords

diffuse optical tomography; breast; optical and functional parameters; methods of determining optical parameters; methods of image reconstruction; perturbation model of reconstruction; temporal point spread function; spatial resolution

Full Text:

PDF

References


1. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd ed., SPIE Press, Bellingham, WA (2015).

2. L. V. Wang, and H.-I. Wu, Biomedical Optics: Principles and Imaging, John Wiley & Sons Inc., Hoboken, New Jersey (2007). Crossref

3. H. Jiang, Diffuse Optical Tomography: Principles and Applications, CRC Press, Boca Ration (2010).

4. V. V. Tuchin (ed.), Handbook of Photonics for Biomedical Science, CRC Press, Taylor & Francis Group, London (2010).

5. A. Konovalov, Time-domain Diffuse Optical Mammotomography. The Photon Average Trajectory Method, Lambert Academic Publishing, Saarbrüken (2014) [in Russian]. ISBN: 978-3-659-53802-5.

6. I. J. Bigio, and S. Fantini, Quantitative Biomedical Optics. Theory, Methods, and Applications, Cambridge University Press, Cambridge (2016).

7. S. R. Arridge, and M. Schweiger, “Inverse methods for optical tomography,” in Information Processing in Medical Imaging, H.H. Barrett (ed.), Springer-Verlag, Flagstaff, 259–277 (1993).

8. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).

9. S. R. Arridge, and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).

10. B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and random media,” Rep. Prog. Phys. 60, 227–292 (1997).

11. K. Michielsen, H. De’Raedt, J. Przeslawski, and N. Garcia, “Computer simulation of time-resolved optical imaging of objects hidden in turbid media,” Phys. Rep. 304, 89?144 (1998).

12. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41?R93 (1999).

13. D. J. Hawrysz, and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contract agents,” Neoplasia 2, 388?417 (2000). Crossref

14. D. A. Boas, D.H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, and R. J. Gaudette, “Imaging the body with diffuse optical tomography,” IEEE Sign. Proc. Mag. 18(6), 57–75 (2001). Crossref

15. D. A. Zimnyakov, and V. V. Tuchin, “Optical tomography of tissues,” Quantum Electronics 32(10), 849–867 (2002).

16. A. G. Yodh, and D. A. Boas, “Functional imaging with diffusing light,” Chap. 21 in Biomedical Photonics Handbook, T. Vo-Dinh (ed.), CRC Press, Boca Ration, 21-1–21-46 (2003).

17. A. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43 (2005).

18. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G.Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Research and Treatment 108, 9–22 (2008). Crossref

19. S. L. Jacques, and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).

20. R. Choe, A. G. Yodh, “Diffuse optical tomography of the breast,” Chap. 18 in Emerging Technology in Breast Imaging and Mammography, J. Suri, R. M. Rangayyan, and S. Laxminarayan (eds.), American Scientific Publishers, Stevenson Ranch, 317–342 (2008).

21. S. R. Arridge, and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Problems 25, 123010 (2009).

22. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).

23. M. Li, Y. Zhang, and J. Bai, “In vivo diffuse optical tomography and fluorescence molecular tomography,” J. Healthcare Eng. 1, 477–507 (2010). Crossref

24. S. R. Arridge, “Methods in diffuse optical imaging,” Phil. Trans. R. Soc. A. 369, 4558?4576 (2011).

25. T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17, 071311 (2012).

26. V. Venugopal, and X. Intes, “Recent advances in optical mammography,” Current Medical Imaging Reviews 8(4), 244–259 (2012). Crossref

27. R. Choe, and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1367–1386 (2012). Crossref

28. D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET Clin. 8(3), 345 (2013). Crossref

29. M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263?283 (1993). Crossref

30. S. Nioka, M. Miwa, S. Orel, M. Shnall, M. Haida, S. Zhao, and B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).

31. A. Yodh, and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).

32. J. C. Hebden, S. R. Arridge, “Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain,” Appl. Opt. 35, 6788–6796 (1996). Crossref

33. K. D. Paulsen, and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt. 35, 3447–3458 (1996). Crossref

34. R. J. Grable, “Optical tomography improves mammography,” Laser Focus World 32, 113–118 (1996).

35. V. V. Lyubimov, “The physical foundation of the strongly scattering media laser tomography,” Proc. SPIE 2769, 107–110 (1996).

36. V. V. Lyubimov, “Optical tomography of highly scattering media by using the first transmitted photons of ultrashort pulses,” Optics and Spectroscopy 80(4), 616-619 (1996).

37. S. R. Arridge, and M. Schweiger, “Image reconstruction in optical tomography,” Phil. Trans. R. Soc. Lond. B 352, 717–726 (1997).

38. S. B. Colak, D. G. Papaioannou, G.W. ‘t Hooft, M.B. van der Merk, H. Schomberg, J. C. Paasschens, J. B. Melissen, and N. A. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36(1), 180?213 (1997). Crossref

39. Y. Pei, F.-B. Lin, and R. L. Barbour, “Modelling of sensitivity and resolution to an included object in homogeneous scattering media and in MRI-derived breast maps,” Opt. Express 5, 203–219 (1999). Crossref

40. A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262?271 (1999). Crossref

41. A. D. Klose, and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698?1707 (1999).

42. J. C. Ye, C. A. Bouman, K. J. Webb, and R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999). Crossref

43. V. B. Volkonskii, O. V. Kravtsenyuk, V. V. Lyubimov, E. P. Mironov, and A. G. Murzin, “The use of statistical characteristics of photon trajectories for the tomographic studies of optical macroheterogeneities in strongly scattering objects,” Optics and Spectroscopy 86(2), 253?260 (1999).

44. D. A. Chursin, V. V. Shuvalov, and I. V. Shutov, “Optical tomograph with photon counting and projective reconstruction of the parameters of absorbing 'phantoms' in extended scattering media,” Quantum Electronics 29(10), 921–926 (1999).

45. S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, and D. T. Delpy, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2?11 (2000). 3.0.CO;2-J target='_blank'>Crossref

46. O. V. Kravtsenyuk, and V. V. Lyubimov, “Specific features of statistical characteristics of photon trajectories in a strongly scattering medium near an object surface,” Optics and Spectroscopy 88(4), 608?614 (2000). Crossref

47. O. V. Kravtsenyuk, and V. V. Lyubimov, “Application of the method of smooth perturbations to the solution of problems of optical tomography of strongly scattering objects containing absorbing microinhomogeneities,” Optics and Spectroscopy 89(1), 107?112 (2000). Crossref

48. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40(19), 3278?3287 (2001). Crossref

49. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Transactions on Medical Imaging 20(6), 470?478 (2001). Crossref

50. J. C. Ye, C. A. Bouman, K. J. Webb, and R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Proc. 10, 909–922 (2001). Crossref

51. R. L. Barbour, R. J. Grable, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018?3036 (2001). Crossref

52. V. A. Markel, and J. C. Schotland, “Inverse problem in optical diffusion tomography. I. Fourier–Laplace inversion formulas,” J. Opt. Soc. Am. A 18, 1336–1347 (2001). Crossref

53. V. V. Shuvalov, D. A. Chursin, and I. V. Shutov, “Spatial resolution, measuring time, and fast visualization of hidden deep phantoms in diffusion optical tomography of extended scattering objects,” Laser Physics 11, 636–649 (2001).

54. E. V. Tret'yakov, V. V. Shuvalov, and I. V. Shutov, “Fast approximate statistical nonlinear algorithms for diffusion optical tomography of objects with a complicated internal structure,” Quantum Electronics 31(12), 1095–1100 (2001).

55. A. D. Klose, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer: part II. Inverse model,” J. Quant. Spectrosc. Radiat. Transfer 72, 715–732 (2002).

56. V. A. Markel, and J. C. Schotland, “Inverse problem in optical diffusion tomography. II. Role of boundary conditions,” J. Opt. Soc. Am. A 19, 558–566 (2002). Crossref

57. V. V. Lyubimov, A. G. Kalintsev, A. B. Konovalov, O. V. Lyamtsev, O. V. Kravtsenyuk, A. G. Murzin, O.V. Golubkina, G. B. Mordvinov, L. N. Soms, and L. M. Yavorskaya, “Application of the photon average trajectories method to real-time reconstruction of tissue inhomogeneities in diffuse optical tomography of strongly scattering media,” Phys. Med. Biol. 47, 2109?2128 (2002).

58. E. V. Tret'yakov, V. V. Shuvalov, and I. V. Shutov, “Visualisation of details of a complicated inner structure of model objects by the method of diffusion optical tomography,” Quantum Electronics 32(11), 941–944 (2002).

59. D. A. Boas, C. A. Bouman, and K. J. Webb (eds.), Special section on imaging through scattering media, J. Electron. Imaging 12(4), 581–620 (2003). Crossref

60. S. Jiang, B. W. Pogue, T. O. McBride, and K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating precalibration phantom,” J. Biomed. Opt. 8, 308–315 (2003).

61. B. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199?209 (2003). Crossref

62. A. D. Klose, and A. H. Hielscher, “Quasi-Newton methods in optical tomographic image reconstruction,” Inverse Problems 19, 387–409 (2003).

63. M. Schweiger, A. P. Gibson, and S. R. Arridge, “Computational aspects of diffuse optical tomography,” IEEE Comput. Sci. Eng. 5(6), 33–41 (2003). Crossref

64. V. A. Markel, V. Mital, and J. C. Schotland, “Inverse problem in optical diffusion tomography. III. Inversion formulas and singular-value decomposition,” J. Opt. Soc. Am. A 20, 890?902 (2003).

65. V. A. Markel, J. A. O’Sullivan, and J. C. Schotland, “Inverse problem in optical diffusion tomography. IV. Nonlinear inversion formulas,” J. Opt. Soc. Am. A 20, 903?912 (2003). Crossref

66. V. V. Lyubimov, O. V. Kravtsenyuk, A. G. Kalintsev, A. G. Murzin, L. N. Soms, A. B. Konovalov, I. I. Kutuzov, O. V. Golubkina, and L. M. Yavorskaya, “The possibility of increasing the spatial resolution in diffusion optical tomography,” J. Opt. Technol. 70(10), 715?720 (2003).

67. H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).

68. X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155?N163 (2004).

69. V. A. Markel, and J. C. Schotland, “Symmetries, inversion formulas, and image reconstruction for optical tomography,” Phys. Rev. E 70, 056616 (2004).

70. M. Schweiger, S. R. Arridge, and I. Nissilä, “Gauss–Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

71. T. Tarvainen, V. Kolehmainen, M. Vauhkonen, A. Vanne, A. P. Gibson, M. Schweiger, S. R. Arridge, and J. P. Kaipio, “Computational calibration method for optical tomography,” Appl. Opt. 44(10), 1879–1888 (2005).

72. V. A. Markel, and J. C. Schotland, “Multiple projection optical diffusion tomography with plane wave illumination,” Phys. Med. Biol. 50, 2351–2364 (2005).

73. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priory anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).

74. J. Bai, T. Gao, K. Ying, and N. Chen, “Locating inhomogeneities in tissue by using the most probable diffuse path of light,” J. Biomed. Opt. 10, 024024 (2005). Crossref

75. A. G. Kalintsev, N. A. Kalintseva, O. V. Kravtsenyuk, and V. V. Lyubimov, “Superresolution in diffuse optical tomography,” Optics and Spectroscopy 99(1), 152–157 (2005). Crossref

76. S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, “Approximation errors and model reduction with an application in optical diffusion tomography,” Inverse Problems 22(1), 175?195 (2006).

77. B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt. 11(3), 033001 (2006).

78. B. W. Pogue, and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 044102 (2006).

79. O. V. Kravtsenyuk, V. L. Kuz’min, V. V. Lyubimov, and I. V. Meglinskii, “Diffuse optical tomography of dynamic inhomogeneities in randomly inhomogeneous media,” Optics and Spectroscopy 100(6), 950?957 (2006). Crossref

80. A. B. Konovalov, V. V. Vlasov, A. G. Kalintsev, O. V. Kravtsenyuk, and V. V. Lyubimov, “Time-domain diffuse optical tomography using analytic statistical characteristics of photon trajectories,” Quantum Electronics 36(11), 1048–1055 (2006).

81. G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).

82. J. C. Schotland, and V. A. Markel, “Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation,” Inverse Problems and Imaging 1, 181–188 (2007).

83. A. B. Konovalov, D. V. Mogilenskikh, V. V. Vlasov, and A. N. Kiselev, “Algebraic reconstruction and post-processing in incomplete data computed tomography: from X-rays to laser beams,” Chap. 26 in Vision Systems: Applications, G. Obinata, and A. Dutta (eds.), I?Tech Education and Publishing, Vienna, 487?518 (2007).

84. A. B. Konovalov, V. V. Vlasov, D. V. Mogilenskikh, O. V. Kravtsenyuk, and V. V. Lyubimov, “Algebraic reconstruction and postprocessing in one-step diffuse optical tomography,” Quantum Electronics 38(6), 588?596 (2008). Crossref

85. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443?2451 (2008).

86. R. Ziegler, B. Brendel, A. Schipper, R. Harbers, M. Beek, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical tomography systems: I. Theory and experiment,” Phys. Med. Biol. 54(2), 399?412 (2009).

87. R. Ziegler, B. Brendel, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical tomography systems: II. Analysis of slab and cup geometry for breast imaging,” Phys. Med. Biol. 54, 413?431 (2009).

88. J. Prakash, V. Chandrasekharan, V. Upendra, and P. K. Yalavarthy, “Accelerating frequency-domain diffuse optical tomographic image reconstruction using graphics processing units,” J. Biomed. Opt. 15, 066009 (2010).

89. M. Patachia, D. C. A. Dutu, and D. C. Dumitras, “Blood oxygenation monitoring by diffuse optical tomography,” Quantum Electronics 40(12), 1062–1066 (2010).

90. F. Larusson, S. Fantini, and E. L. Miller, “Hyperspectral image reconstruction for diffuse optical tomography,” Biomed. Opt. Express 2(4), 946–965 (2011). Crossref

91. M. Schweiger, “GPU-accelerated finite element method for modelling light transport in diffuse optical tomography,” Int. J. Biomed. Imaging 2011, 403892 (2011). Crossref

92. S. G. Proskurin, “Using late arriving photons for diffuse optical tomography of biological objects,” Quantum Electronics 41(5), 402-406 (2011). Crossref

93. A. B. Konovalov, V. V. Vlasov, A. S. Uglov, and V. V. Lyubimov, “A semi-analytical perturbation model for diffusion tomogram reconstruction from time-resolved optical projections,” Proc. SPIE 8088, 80880T (2011). Crossref

94. L. Y. Chen, M. C. Pan, and M. C. Pan, “Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography,” Appl. Opt. 51(1), 43-54 (2012). Crossref

95. O. Balima, Y. Favennec, J. Boulanger, and A. Charette, “Optical tomography with discontinuous Galerkin formulation of the radiative transfer equation in frequency domain,” J. Quant. Spectrosc. Radiat. Transfer 113, 805?814 (2012).

96. F. Larusson, S. Fantini, and E. L. Miller, “Parametric level set reconstruction methods for hyperspectral diffuse optical tomography,” Biomed. Opt. Express 3(5), 1006–1024 (2012). Crossref

97. F. Larusson, P. G. Anderson, E. Rosenberg, M. E. Kilmer, A. Sassaroli, S. Fantini, and E. L. Miller, “Parametric estimation of 3D tubular structures for diffuse optical tomography,” Biomed. Opt. Express 4(2), 271–286 (2013). Crossref

98. A. B. Konovalov, V. V. Vlasov, and V. V. Lyubimov, “Statistical characteristics of photon distributions in a semi-infinite turbid medium: analytical expressions and their application to optical tomography,” Optik 124, 6000?6008 (2013).

99. S. G. Proskurin, and A. Y. Potlov, “Early- and late-arriving photons in diffuse optical tomography,” Photon. Las. Med. 2, 139–145 (2013).

100. B. Tavakoli, and Q. Zhu, “Two-step reconstruction method using global optimization and conjugate gradient for ultrasound-guided diffuse optical tomography,” J. Biomed. Opt. 18(1), 016006 (2013).

101. J.M. Kainerstorfer, Y. Yu, G. Weliwitigoda, P.G. Anderson, A. Sassaroli, and S. Fantini, “Depth discrimination in diffuse optical transmission imaging by planar scanning off-axis fibers: initial applications to optical mammography,” Plos One 8(3), e58510 (2013).

102. A. Y. Potlov, S. G. Proskurin, and S. V. Frolov, “Three-dimensional representation of late-arriving photons for detecting inhomogeneities in diffuse optical tomography,” Quantum Electronics 44(2), 174-181 (2014). Crossref

103. M. J. Saikia, R. Kanhirodan, and R. M. Vasu, “High-speed GPU-based fully three-dimensional diffuse optical tomographic system,” Int. J. Biomed. Imaging 2014, 376456 (2014). Crossref

104. A. B. Konovalov, and V. V. Vlasov, “Theoretical limit of spatial resolution in diffuse optical tomography using a perturbation model,” Quantum Electronics 44(3), 239-246 (2014). Crossref

105. A. S. Kuratov, K. V. Rudenko, and V. V. Shuvalov, “Differential visualisation of a spectrally selective structure of strongly scattering objects,” Quantum Electronics 44(7), 652-656 (2014). Crossref

106. A. B. Konovalov, and V. V. Vlasov, “Calculation of the weighting functions for the reconstruction of absorbing inhomogeneities in tissue by time-resolved optical projections,” Quantum Electronics 44(8), 719-725 (2014). Crossref

107. T. Zhang, J. Zhou, P. R. Carney, and H. Jiang, “Towards real-time detection of seizures in awake rats with GPU accelerated diffuse optical tomography,” J. Neurosci. Methods 240, 28–36 (2015). Crossref

108. L. Y. Chen, M. C. Pan, J. M. Yu, and M. C. Pan, “Diffuse optical imaging through incorporating structural information into edge-preserving regularization,” Optical and Quantum Electronics 48(2), 130 (2016). Crossref

109. A. Y. Potlov, S. V. Frolov, and S. G. Proskurin, “Localization of inhomogeneities in diffuse optical tomography based on late arriving photons,” Optics and Spectroscopy 120(1), 9–19 (2016). Crossref

110. A. B. Konovalov, and V. V. Vlasov, “Total variation based reconstruction of scattering inhomogeneities in tissue from time-resolved optical projections,” Proc. SPIE 9917, 99170S (2016). Crossref

111. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997). Crossref

112. J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W. t’Hooft, and E. S. van der Linden, “First results from the Philips optical mammoscope,” Proc. SPIE 3194, 184?190 (1999). Crossref

113. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37(10), 1982–1989 (1998).

114. S. B. Colak, M. B. van der Mark, G. W. ’t Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum. Electron. 5(4), 1143–1158 (1999).

115. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38(13), 2927?2943 (1999). Crossref

116. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38(25), 5480–5490 (1999). Crossref

117. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).

118. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261?266 (2001).

119. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imag. 20(12), 1334–1340 (2001).

120. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, and S. P. Poplack, “Initial studies of in vivo absorbing and scattering heterogeneity in near-infrared tomographic breast imaging,” Opt. Lett. 26(11), 822?824 (2001).

121. V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7(1), 80-87 (2002).

122. T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7(1), 72-79 (2002).

123. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).

124. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Scott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003). Crossref

125. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).

126. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100(21), 12349–12354 (2003).

127. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with indocyanine green,” Med. Phys. 30(6), 1039–1047 (2003).

128. Y. Xu, X. Gu, L. L. Fajardo, and H. Jiang, “In vivo breast imaging with diffuse optical tomography based on higher-order diffusion equations,” Appl. Opt. 42, 3163?3169 (2003). Crossref

129. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003). Crossref

130. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stobel, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).

131. P. Taroni, A. Pifferi, A. Torricelli, L. Spinelli, G. M. Danesini, and R. Cubeddu, “Do shorter wavelengths improve contrast in optical mammography?,” Phys. Med. Biol. 49, 1203–1215 (2004).

132. P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, and R. Cubeddu, “Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm,” J. Biomed. Opt. 9(3), 464?473 (2004).

133. S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9(6), 1161–1171 (2004).

134. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541?552 (2004).

135. J. C. Hebden, and H. Rinneberg (eds.), Special section on time-domain optical mammography, Phys. Med. Biol. 50(11), 2429?2596 (2005). Crossref

136. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic X-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10(2), 024033 (2005).

137. T. D. Yates, J. C. Hebden, A. P. Gibson, L. Enfield, N. L. Everdell, S. R. Arridge, and D. T. Delpy, “Time-resolved optical mammography using a liquid coupled interface,” J. Biomed. Opt. 10(5), 054011 (2005).

138. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).

139. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103(23), 8828–8833 (2006).

140. L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt. 46(17), 3628–3638 (2007). Crossref

141. S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34(11), 4545–4557 (2007).

142. J. Z. Wang, X. Liang, Q. Zhang, L. L. Fajardo, and H. Jiang, “Automated breast cancer classification using near-infrared optical tomographic images,” J. Biomed. Opt. 13(4), 044001 (2008).

143. A. G. Orlova, I. V. Turchin, V. I. Plehanov, N.M. Shakhova, I. I. Fiks, M. I. Kleshnin, N. Y. Konuchenko, and V. A. Kamensky, “Frequency-domain diffuse optical tomography with single source-detector pair for breast cancer detection,” Laser Phys. Lett. 5(4), 321–327 (2008).

144. R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).

145. J. Wang, B. W. Pogue, S. Jiang, and K. D. Paulsen, “Near-infrared tomography of breast cancer hemoglobin, water, lipid, and scattering using combined frequency domain and CW measurements,” Opt. Lett. 35, 82–84 (2010).

146. Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “The potential role of optical tomography with ultrasound localization in assisting ultrasound diagnosis of early-stage invasive breast cancers,” Radiology 256(2), 367–378 (2010).

147. Y. Yu, A. Sassaroli, D. K. Chen, M. J. Homer, R. A. Graham, and S. Fantini, “Near-infrared, broad-band spectral imaging of the human breast for quantitative oximetry: applications to healthy and cancerous breasts,” J. Innov. Opt. Health Sci. 3(4), 267-277 (2010).

148. D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37(4), 1840–1849 (2010).

149. S. Srinivasan, C. M. Carpenter, H. R. Ghadyani, S. J. Taka, P. A. Kaufman, R. M. DiFlorio-Alexander, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Image guided near-infrared spectroscopy of breast tissue in vivo using boundary element method,” J. Biomed. Opt. 15(6), 061703 (2010). Crossref

150. Q. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).

151. Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Imi, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393?401 (2011).

152. S. Fantini, and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng. 40(2), 398?407 (2012). Crossref

153. Q. Zhu, P. A. DeFusco, A. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266(2), 433–442 (2013).

154. L. Enfield, G. Cantanhede, M. Douek, V. Ramalingam, A. Purushotham, J. Hebden, and A. Gibson, “Monitoring the response to neoadjuvant hormone therapy for locally advanced breast cancer using three-dimensional time-resolved optical mammography,” J. Biomed. Opt. 18(5), 056012 (2013). Crossref

155. P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R.A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” Plos One 10(3), e0117322 (2015).

156. H. Ogura, N. Yoshizawa, S. Ueda, Y. Hosokawa, R. Matsunuma, J. Tochikubo, H. Nasu, T. Shigekawa, H. Takeuchi, A. Osaki, T. Saeki, K. Yoshimoto, E. Ohmae, T. Suzuki, Y. Ueda, Y. Yamashita, and H. Sakahara, “Near-infrared diffuse optical imaging for early prediction to neoadjuvant chemotherapy in patients with primary breast cancer,” Cancer Res. 76, P4-03-06 (2016).

157. M. J. Kim, M.-Y. Su, H. J. Yu, J.-H. Chen, E.-K. Kim, H. J. Moon, and J. S. Choi, “US-localized diffuse optical tomography in breast cancer: comparison with pharmacokinetic parameters of DCE-MRI and with pathologic biomarkers,” BMC Cancer 16, 50 (2016). Crossref

158. R. Gordon, “Stop breast cancer now! Imagining imaging pathways toward search, destroy, cure, and watchful waiting of premetastasis breast cancer,” Chap. 10 in Breast Cancer: A Lobar Disease, T. Tot. (ed.), Springer-Verlag, London, 167–205 (2011).

159. I. V. Turchin, V. A. Kamensky, V. I. Plehanov, A. G. Orlova, M. S. Kleshnin, I. I. Fiks, M. V. Shirmanova, I. G. Meerovich, L. R. Arslanbaeva, V. V. Jerdeva, and A. P. Savitsky, “Fluorescence diffuse tomography for detection of red fluorescent protein expressed tumors in small animals,” J. Biomed. Opt. 13(4), 041310 (2008). Crossref

160. M. S. Kleshnin, and I. V. Turchin, “Spectrally resolved fluorescence diffuse tomography of biological tissues,” Quantum Electronics 40(6), 531–537 (2010). Crossref

161. M. S. Kleshnin, and I. V. Turchin, “Fluorescence diffuse tomography technique with autofluorescence removal based on dispersion of biotissue optical properties,” Laser Phys. Lett. 10, 075601 (2013).

162. V. V. Tuchin, S. S. Utz, and I. V. Yaroslavsky, “Tissue optics, light distribution, and spectroscopy,” Opt. Eng. 33(10), 3178–3188 (1994).

163. V. V. Tuchin, “Light-tissue interactions,” Chap. 3 in Biomedical Photonics Handbook, T. Vo-Dinh (ed.), CRC Press, Boca Ration (2003).

164. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Tissue Optical Properties,” Chap. 5 in Handbook of Biomedical Optics, D. A. Boas, C. Pitris, and N. Ramanujam (eds.), CRC Press, Taylor & Francis Group, London, 67–100 (2011).

165. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, E. E. Chikina, A. B. Knyazev, and O. V. Mareev, “Optical properties of mucous membrane in the spectral range 350-2000 nm,” Optics and Spectroscopy 97(6), 978–983 (2004). Crossref

166. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” Journal of Physics D: Applied Physics 38(15), 2543–2555 (2005). Crossref

167. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm,” Optics and Spectroscopy 99(5), 836–842 (2005). Crossref

168. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, and V. V. Tuchin, “Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: prognosis for gastroenterology,” Medical Laser Application 22, 95–104 (2007). Crossref

169. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human sclera in spectral range 370-2500 nm,” Optics and Spectroscopy 109(2), 197–204 (2010). Crossref

170. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” Journal of Innovative Optical Health Sciences 4(1), 9–38 (2011).

171. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350-2500 nm spectral range,” Quantum Electronics 44(8), 779–784 (2014).

172. The Free Dictionary by Farlex.

173. Y. L. Zolotko, Atlas of Topographic Anatomy of Human. Part 2. Breast, Abdomen, Pelvis, Meditsina, Moscow (1967) [in Russian].

174. Topographic anatomy and operative surgery. Breast topography [in Russian].

175. V. P. Kharchenko, and N. I. Rozhkova (eds.) Mammology. National Handbook, GEOTAR-Media, Moscow (2009) [in Russian].

176. J. N. Wolfe, “Xerography of the breast,” Radiology 91, 231?240 (1968).

177. D. B. Kopans, Breast Imaging, 3rd ed., Lippincott Williams & Wilkins, Philadelphia (2007).

178. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010). Crossref

179. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006). Crossref

180. T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue: prognosis for optical mammography,” J. Biomed. Opt. 1(3), 342?355 (1996). Crossref

181. Histological Grading of Breast Cancer, 2nd ed., Meditsina, Moscow (1984) [in Russian].

182. L. W. Dalton, D. L. Page, and W. D. Dupont, ‘‘Histologic grading of breast carcinoma: a reproducibility study,” Cancer 73, 2765–2770 (1994).

183. M. Culter, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet. 48, 721?727 (1929).

184. C. M. Gros, Y. Quenneville, and Y. J. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297?306 (1972).

185. H. Wallberg, “Diaphanography in various breast disorders: clinical and experimental observations,” Acta Radiol. Diagn. 26, 271?276 (1985).

186. B. Drexler, J. L. Davis, and G. Schofield, “Diaphanography in the diagnosis of breast cancer,” Radiology 157, 41?44 (1985).

187. A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, and D. Hallberg, “Light scanning versus mammography for detection of breast cancer in screening and clinical practice,” Cancer 65(8), 1671?1677 (1990).

188. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electronics 26(12), 2166?2185 (1990). Crossref

189. J. Mobley, and T. Vo-Dinh, “Optical properties of tissue,” Chap. 2 in Biomedical Photonics Handbook, T. Vo-Dinh (ed.), CRC Press, Boca Ration (2003).

190. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).

191. S. P. Treweek, and J. C. Barbenel, “Direct measurement of the optical properties of human breast skin,” Medical & Biological Engineering & Computing 34, 285–289 (1996). Crossref

192. Y. Zhang, Y. Chen, Y. Yu, X. Xue, V. V. Tuchin, and D. Zhu, “Visible and near-infrared spectroscopy for distinguishing malignant tumor tissue from benign tumor and normal breast tissues in vitro,” J. Biomed. Opt. 18(7), 077003 (2013). Crossref

193. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt., 32(4), 559–568 (1993). Crossref

194. M. R. Neuman, “Pulse oximetry: physical principles, technical realization, and present limitations,” Adv. Exp. Med. Biol. 220, 135–144 (1987).

195. J. W. Severinghaus, “History and recent developments in pulse oximetry,” Scand. J. Clin. Lab. Invest. 53, 105–111 (1993).

196. G. Maret, and P. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Zeitschrift fur Phisik B Condensed Matter 65, 409?413 (1987). Crossref

197. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60, 1134?1137 (1988).

198. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4(4), 347–354 (2002). Crossref

199. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000). Crossref

200. S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53, 6713–6727 (2008).

201. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochemistry and Photobiology 72(3), 383–391 (2000).

202. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).

203. C. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach,” J. Biomed. Opt. 13(3), 034015 (2008). Crossref

204. R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sterenborg, “Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers,” Opt. Lett. 27(4), 246–248 (2002).

205. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).

206. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, N. Balestreri, S. Ganino, S. Menna, E. Cassano, and R. Cubeddu, “Effects of tissue heterogeneity on the optical estimate of breast density,” Biomed. Opt. Express 3(10), 2411–2418 (2012). Crossref

207. P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).

208. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9(6), 1137–1142 (2004).

209. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).

210. J. L. Sandell, and T. C. Zhu, “A review of in-vivo optical properties oh human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).

211. G. M. Palmer, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072–1078 (2006). Crossref

212. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50, 2451–2468 (2005).

213. M. S. Nair, N. Ghosh, N. S. Raju, and A. Pradhan, “Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model,” Appl. Opt. 41(19), 4024–4035 (2002). Crossref

214. W. Mo, T. S. S. Chan, L. Chen, and N. Chen, “Quantitative characterization of optical and physiological parameters in normal breasts using time-resolved spectroscopy: in vivo results of 19 Singapore women,” J. Biomed. Opt. 14(6), 064004 (2009).

215. S. E. Skipetrov, and I. V. Meglinskii, “Diffusing-wave spectroscopy in randomly inhomogeneous media with spatially localized scattered flows,” J. Exp. and Theor. Phys. 86(4), 661–665 (1998).

216. M. Heckmeier, S. E. Skipetrov, G. Maret, and R. Maynard, “Imaging of dynamic heterogeneities in multiple-scattering media,” J. Opt. Soc. Am. A 14, 185?191 (1997). Crossref

217. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855?1858 (1995).

218. D. A. Boas, and A. G. Yodh, “Spatially varying dynamic properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A. 14, 192?215 (1997).

219. C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14(3), 1125?1144 (2006). Crossref

220. H. M. Varma, B. Banerjee, D. Roy, A. K. Nandakumaran, and R.M. Vasu, “Convergence analysis of the Newton algorithm and a pseudo-time marching scheme for diffuse correlation tomography,” J. Opt. Soc. Am. A 27(2), 259-267 (2010). Crossref

221. Y. Lin, C. Huang, D. Irwin, L. He, Y. Shang, and G. Yu, “Three-dimensional flow contrast imaging of deep tissue using noncontact diffuse correlation tomography,” Appl. Phys. Lett. 104, 121103 (2014).

222. H. M. Varma, C. P. Valdes, A. K. Kristoffersen, J. P. Culver, and T. Durduran, “Speckle contrast optical tomography: A new method for deep tissue three-dimensional tomography of blood flow,” Biomed. Opt. Express 5(4), 1275-1289 (2014). Crossref

223. L. He, Y. Lin, C. Huang, D. Irwin, M. M. Szabunio, and G. Yu, “Noncontact diffuse correlation tomography of human breast tumor,” J. Biomed. Opt. 20(8), 086003 (2015). Crossref

224. E. M. C. Hillman, Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications: Ph.D. thesis, University College London, London (2002).

225. B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005). Crossref

226. A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G.M. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express 11, 853–867 (2003). Crossref

227. I. Fiks, M. Kleshnin, and I. Turchin, “Reconstruction in fluorescence diffuse tomography based on nonnegativity condition,” Proc. SPIE 8799, 87990V (2013). Crossref

228. I. Fiks, “A novel method based on the Tikhonov functional for non-negative solution of a system of linear equations with non-negative coefficients,” Int. J. Comput. Methods 11, 1350071 (2014).

229. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988). Crossref

230. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000). Crossref

231. V. Ntziachristos, X. Ma, and B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998). Crossref

232. C. V. Zint, F. Gao, M. Torregrossa, and P. Poulet, “Near-infrared optical tomography of scattering cylindrical phantoms using time-resolved detection,” Proc. SPIE 4250, 109–119 (2001). Crossref

233. S. Antonioli, M. Crotti, A. Cuccato, I. Rech, and M. Ghioni, “Time-correlated single-photon counting system based on a monolithic time-to-amplitude converter,” J. Modern Opt. 59(17), 1512–1524 (2012). Crossref

234. S. Antonioli, L. Miari, A. Cuccato, M. Crotti, I. Rech, and M. Ghioni, “8-channel acquisition system for time-correlated single-photon counting,” Rev. Sci. Instrum., 84(6), 064705 (2013). Crossref

235. Y. Bérubé-Lauzière, M. Crotti, S. Boucher, S. Ettehadi, J. Pichette, and I. Rech, “Prospects on time-domain diffuse optical tomography based on time-correlated single photon counting for small animal imaging,” J. Spectrosc. 2016, 1947613 (2016).

236. C. H. Schmitz, D. P. Klemer, R. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44(11), 2140?2153 (2005). Crossref

237. ?. ?. Kokhanovsky, Light Scattering Media Optics: Problems and Solutions, Springer, Berlin (2004).

238. A. N. Tikhonov, and V. A. Arsenin, Solution of Ill-Posed Problems, Winston & Sons, Washington (1977).

239. C. L. Lawson, and R. J. Hanson, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs (1974).

240. C. C. Paige, and M. A. Saunders, “LSQR: An algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Softw. 8, 43?71 (1982). Crossref

241. M. R. Hestenes, and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. NBS. 49, 409?436 (1952).

242. L. Kaufman, “Maximum likelihood, least squares, and penalized least squares for PET,” IEEE Trans. Med. Imag. 12, 200?214 (1993). Crossref

243. R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography,” J. Theor. Biol. 29, 471?481 (1970). Crossref

244. C. L. Byrne, “Iterative image reconstruction algorithms based on cross-entropy minimization,” IEEE Trans. Image Process. 2, 96–103 (1993). Crossref

245. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. SIAM 11, 431–441 (1963).

246. M. Born, and E. Wolf, Principles of Optics, 7th ed., Cambridge University Press, Cambridge (1999).

247. S. M. Rytov, “Light diffraction on ultrasonic waves,” Izv. Akad. Nauk SSSR, Ser. Fiz., No 2, 223–259 (1937) [in Russian].

248. M. Suzen, A. Giannoula, and T. Durduran, “Compressed sensing in diffuse optical tomography,” Opt. Express 18(23), 23676–23690 (2010). Crossref

249. O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag. 30(5), 1129–1142 (2011). Crossref

250. S. Okawa, Y. Hoshi, and Y. Yamada, “Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization,” Biomed. Opt. Express 2(12), 3334–3348 (2011). Crossref

251. V. C. Kavuri, Z.-J. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express 3(5), 943–957 (2012). Crossref

252. J. Prakash, C. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, “Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800609 (2014). Crossref

253. C. B. Shaw, and P. K. Yalavarthy, “Performance evaluation of typical approximation algorithms for nonconvex lp-minimization in diffuse optical tomography,” J. Opt. Soc. Am. A 31(4), 852–862 (2014). Crossref

254. C. Chen, F. Tian, H. Liu, and J. Huang, “Diffuse optical tomography enhanced by clustered sparsity for functional brain imaging,” IEEE Trans. Med. Imag. 33(12), 2323–2331 (2014). Crossref

255. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006). Crossref

256. E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207–1223 (2006). Crossref

257. E. J. Candes, and J. K. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Problems 23, 969-985 (2007). Crossref

258. J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459–1476 (2012). Crossref

259. Z. Xue, X. Ma, Q. Zhang, P. Wu, X. Yang, and J. Tian, “Adaptive regularized method based on homotopy for sparse fluorescence tomography,” Appl. Opt. 52(11), 2374–2384 (2013). Crossref

260. H. Yi, D. Chen, W. Li, S. Zhu, X. Wang, J. Liang, and J. Tian, “Reconstruction algorithms based on l1-norm and l2-norm for two imaging models of fluorescence molecular tomography: a comparative study,” J. Biomed. Opt. 18(5), 056013 (2013). Crossref

261. J. Shi, B. Zhang, F. Liu, J. Luo, and J. Bai, “Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient,” Opt. Lett. 38(18), 3696–3699 (2013). Crossref

262. J. Ye, C. Chi, Z. Xue, P. Wu, Y. An, H. Xu, S. Zhang, and J. Tian, “Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method,” Biomed. Opt. Express 5(2), 387–406 (2014). Crossref

263. D. Zhu, Y. Zhao, R. Baikejiang, Z. Yuan, and C. Li, “Comparison of regularization methods in fluorescence molecular tomography,” Photonics 1, 95–109 (2014). Crossref

264. D. Zhu, and C. Li, “Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement,” Phys. Med. Biol. 59, 2901–2912 (2014). Crossref

265. A. Jin, B. Yazici, and V. Ntziachristos, “Light illumination and detection patterns for fluorescence diffuse optical tomography based on compressive sensing,” IEEE Trans. Image Process. 23(6), 2609–2624 (2014). Crossref

266. W. Xie, Y. Deng, K. Wang, X. Yang, and Q. Luo, “Reweighted L1 regularization for restraining artifacts in FMT reconstruction images with limited measurements,” Opt. Lett. 39(14), 4148?4151 (2014). Crossref

267. L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156?4159 (2014). Crossref

268. F. Yang, M.S. Ozturk, L. Zhao, W. Cong, G. Wang, and X. Intes, “High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing,” IEEE Trans Biomed. Eng. 62, 248?255 (2015). Crossref

269. H. Guo, J. Yu, X. He, Y. Hou, F. Dong, and S. Zhang, “Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization,” Biomed. Opt. Express 6(5), 1648?1664 (2015). Crossref

270. J. Shi, F. Liu, J. Zhang, J. Luo, and J. Bai, “Fluorescence molecular tomography reconstruction via discrete cosine transform-based regularization,” J. Biomed. Opt. 20(5), 055004 (2015). Crossref

271. Y. An, J. Liu, G. Zhang, J. Ye, Y. Du, Y. Mao, C. Chi, and J. Tian, “A novel region reconstruction method for fluorescence molecular tomography,” IEEE Trans Biomed. Eng. 62, 1818?1826 (2015). Crossref

272. X. He, F. Dong, J. Yu, H. Guo, and Y. Hou, “Reconstruction algorithm for fluorescence molecular tomography using sorted L-one penalized estimation,” J. Opt. Soc. Am. A 32(11), 1928?1935 (2015). Crossref

273. S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci. Comput., 20(1), 33–61 (1999). Crossref

274. M. Schweiger, and S. R. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014). Crossref

275. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Eng. 25(6), 711?732 (2009). Crossref

276. M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, "Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography," J. Biomed. Opt. 18(8), 086007 (2013). Crossref

277. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. Neil, P. M. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data acquisition,” Appl. Opt. 46, 7384?7391 (2007). Crossref

278. A. T. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imag. 27, 1152?1163 (2008). Crossref

279. F. Gao, J. Li, L. Zhang, P. Poulet, H. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-revolved transmittances of small-animal-sized phantom,” Appl. Opt. 49, 3163?3172 (2010). Crossref

280. V. Venugopal, J. Chen, F. Lesage, and X. Intes, “Full-field time-resolved fluorescence tomography of small animals,” Opt. Lett. 35, 3189?3191 (2010). Crossref

281. C. Darne, Y. Yujie, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59, R1?R64 (2014). Crossref

282. V. V. Lyubimov, “Principles of fluorescence laser tomography of strongly scattering media,” Optics and Spectroscopy 88(2), 282?285 (2000). Crossref

283. J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances, SPIE Press, Bellingham, PM114 (2003). Crossref

284. S. P. Kotova, I. V. Mayorov, and A. M. Mayorova, “Application of neutral networks for determining optical parameters of strongly scattering media from the intensity profile of backscattered radiation,” Quantum Electronics 37(1), 22–26 (2007). Crossref

285. B. A. Veksler, and I. V. Meglinski, “Application of the artificial neural network for reconstructing the internal-structure image of a random medium by spatial characteristics of backscattered optical radiation,” Quantum Electronics 38(6), 576–579 (2008). Crossref

286. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA. 91, 4887?4891 (1994). Crossref

287. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331?2336 (1989). Crossref






© 2014-2017 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+