Choosing the probe radiation wavelengths for noninvasive monitoring of haemoglobin in blood

Igor L. Davydkin
Samara State Medical University, Russia

Natalia S. Kozlova (Login required)
Samara State Medical University, Russia

Vadim N. Koniukhov
Samara State Aerospace University, Russia

Tatiana P. Kuzmina
Samara State Medical University, Russia

Elizaveta V. Mordvinova
Samara State Medical University, Russia

Paper #2835 received 2015.12.23; revised manuscript received 2016.03.10; accepted for publication 2016.03.10; published online 2016.03.31.

DOI: 10.18287/JBPE16.02.010305


The goal of our study was to estimate the accuracy of measuring the blood haemoglobin concentration by means of the pulse CO-oximetry, depending on the probe radiation wavelength.

Revealing the combinations of wavelengths, optimal for minimising the measurement error, will allow the formulation of requirements to the instruments for noninvasive assessment of haemoglobin concentration, applicable in wide clinical practice. To solve this problem, we examined a group of haematological patients in the Haematology Department of the Samara State Medical University Clinic with the aim to compare the results obtained using the experimental multiwave system for noninvasive haemoglobin concentration assessment and the results of the clinical blood analysis.


monitoring; hemoglobin; noninvasive diagnosis; laser

Full Text:



1. J. W. McMurdy, G. D. Jay, S. Suner, and G. Crawford, “Noninvasive Optical, Electrical, and Acoustic Methods of Total Hemoglobin Determination,” Clinical Chemistry 54(2), 264-272 (2008). Crossref

2. K. Saigo, S. Imoto, M. Hashimoto, H. Mito, J. Moriya, T. Chinzei, Y. Kubota, S. Numada, T. Ozawa, and S. Kumagai, “Noninvasive Monitoring of Hemoglobin: The Effects of WBC Counts on Measurement,” Am. J. Clin. Pathol. 121(1), 51-55 (2004). Crossref

3. E. V. Kozhokina, “Noninvasive methods of measuring bilirubin, haemoglobin, and glucose. The haemobiliglucometer instrument,” Scientific and Technical Journal of Information Technologies, Mechanics and Optics 2(72), 157-162 (2011). [in Russian].

4. R. Kumar, and H. Ranganathan, “Noninvasive Sensor Technology for Total Hemoglobin Measurement in Blood,” Journal of Industrial and Intelligent Information 1(4), 243-246 (2013). Crossref

5. R. Doshi, and A. Panditrao, “Non-Invasive Optical Sensor for Hemoglobin Determination,” International Journal of Engineering Research and Applications 3(2), 559-562 (2013).

6. J. E. Bender, A. B. Shang, E. W. Moretti, B. Yu, L. M. Richards, and N. Ramanujam, “Noninvasive monitoring of tissue hemoglobinusing UV-VIS diffuse reflectance spectroscopy: a pilot study,” Optics Express 17(26), 23396-23409 (2009). Crossref

7. U. Timm, G. Leen, E. Lewis, D. McGrath, J. Kraitl, and H. Ewald, “Non-Invasive Optical Real-time Measurement of Total Hemoglobin Content,” Procedia Engineering 5, 488-491 (2010). Crossref

8. D. J. Deyo, R. O. Esenaliev, O. Hartrumpf, M. Motamedi, and D. S. Prough, “Continuous noninvasive optoacoustic monitoring of hemoglobin concentration,” Anesthesiol Analgesia 92(S139), (2001).

9. I. Y. Petrova, R. O. Esenaliev, Y. Y. Petrov, H. P. E. Brecht, C. H. Svensen, J. Olsson, D. J. Deyo, and D. S. Prough, “Optoacoustic monitoring of blood hemoglobin concentration: a pilot clinical study,” Opt. Lett. 30(13), 1677–1679 (2005). Crossref

10. G. Lindner, and A. K. Exadaktylos, “How Noninvasive Haemoglobin Measurement with Pulse CO-Oximetry Can Change Your Practice: An Expert Review,” Emerg. Med. Int. 2013, 701529 (2013). Crossref

11. D. Frasca, C. Dahyot-Fizelier, K. Catherine, Q. Levrat, B. Debaene, and O. Mimoz, “Accuracy of a Continuous Noninvasive Hemoglobin Monitor in Intensive Care Unit Patients,” Crit. Care Med. 39(10), 2277-2282 (2011). Crossref

12. Rad-57. Signal Extraction Pulse CO-Oximeter, Operator’s manual (2011). Crossref

13. Radical-7. Signal Extraction Pulse CO-Oximeter, Operator’s manual (2010). Crossref

14. S. Prahl, “Optical absorption of hemoglobin,” Oregon Medical Laser Center (1999).

15. O. Siggaard-Andersen, B. Norgaard-Pedersen, and J. Rem, “Hemoglobin pigments spectrophotometric determination of oxy-, carboxy-, met-, and sulfhemoglobin in capillary blood,” Clinica Chimica Acta 42(1), 85-100 (1972). Crossref

16. L. Randeberg, J. Bonesronning, M. Dalaker, J. Nelson, and L. Svaasand, “Methemoglobin formation during laser induced photothermolysis of vascular skin lesions,” Lasers in Surgery and Medicine 34(5), 414-419 (2004). Crossref

17. M. Meinke, G. Müller, M. Friebel, and J. Helfmann, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007). Crossref

18. R. M. Pope, and E. S. Fry, Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements, Applied Optics 36(33), 8710-8723 (1997). Crossref

19. K. F. Palmer, and D. Williams, “Optical properties of water in the near infrared,” Journal of the Optical Society of America 64(8), 1107-1110 (1974). Crossref

20. J. Coquin, A. Dewitte, Y. L. Manach, M. Caujolle, O. Joannes-Boyau, C. Fleureau, G. Janvier, and A. Ouattara, “Precision of noninvasive hemoglobin-level measurement by pulse co-oximetry in patients admitted to intensive care units for severe gastrointestinal bleeds,” Critical Care Medicine 40(9), 2576-2582 (2012). Crossref

21. L. J. Moore, C. E. Wade, L. Vincent, J. Podbielski, E. Camp, D. Junco, H. Radhakrishnan, J. McCarthy, B. Gill, and J. B. Holcomb, “Evaluation of noninvasive hemoglobin measurements in trauma patients,” The American Journal of Surgery 206(6), 1041-1047 (2013). Crossref

© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+