Integrated intravascular ultrasound and optical coherence tomography technology: a promising tool to identify vulnerable plaques [INVITED PAPER]

Jiawen Li
Beckman Laser Institute, University of California, Irvine, CA, USA

Zhongping Chen (Login required)
Beckman Laser Institute, University of California, Irvine, CA, USA

Paper #2865 received 2015.11.29; revised manuscript received 2015.12.25; accepted for publication 2015.12.27; published online 2016.02.01.

DOI: 10.18287/JBPE-2015-1-4-209


Heart attack is mainly caused by the rupture of a vulnerable plaque. IVUS-OCT is a novel medical imaging modality that provides opportunities for accurate assessment of vulnerable plaques in vivo in patients. IVUS provides deep penetration to image the whole necrotic core while OCT enables accurate measurement of the fibrous cap of a plaque owing to its high resolution. In this paper, the authors describe the fundamentals, the technical designs and the applications of IVUS-OCT technology. Results from cadaver specimens are summarized, which indicated the complementary nature of OCT and IVUS for assessment of vulnerable plaques, plaque composition, and stent-tissue interactions. Furthermore, previously reported in vivo animal experiments are reviewed to assess the clinical adaptability of IVUS-OCT. Future directions for this technology are also discussed in this review.


Optical coherence tomography; ultrasound; multi-modality imaging; intravascular imaging; vulnerable plaques; cardiology; intravascular OCT; IVUS; integraged IVUS/OCT

Full Text:



1. K. Okrainec, D. K. Banerjee, and M. J. Eisenberg, “Coronary artery disease in the developing world,” American Heart Journal 148(1), 7-15 (2004). Crossref

2. J. G. Kips, P. Segers, and L. M. Van Bortel, “Identifying the vulnerable plaque: A review of invasive and non-invasive imaging modalities,” Artery Research 2(1), 21-34 (2008). Crossref

3. J. Sanz, and Z. A. Fayad, “Imaging of atherosclerotic cardiovascular disease,” Nature 451(7181), 953-957 (2008).

4. D. Vancraeynest, A. Pasquet, V. Roelants, B. L. Gerber, and J.-L. J. Vanoverschelde, “Imaging the Vulnerable Plaque,” Journal of the American College of Cardiology 57(20), 1961-1979 (2011). Crossref

5. J. R. Davies, J. H. F. Rudd, P. L. Weissberg, and J. Narula, “Radionuclide Imaging for the Detection of Inflammation in Vulnerable Plaques,” Journal of the American College of Cardiology 47(8 SUPPL.), C57-C68 (2006).

6. T. Kubo, T. Imanishi, S. Takarada, A. Kuroi, S. Ueno, T. Yamano, Y. Matsuo, T. Masho, H. Kitabata, K. Tsuda, Y. Tomobuchi, and T. Akasaka, “Assessment of Culprit Lesion Morphology in Acute Myocardial Infarction,” Journal of the American College of Cardiology 50(10), 934-939 (2007). Crossref

7. T. Sawada, J. Shite, H. M. Garcia-Garcia, T. Shinke, S. Watanabe, H. Otake, D. Matsumoto, Y. Tanino, D. Ogasawara, H. Kawamori, H. Kato, N. Miyoshi, M. Yokoyama, P. W. Serruys, and K.-I. Hirata, “Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma,” European Heart Journal 29(9), 1136-1146 (2008). Crossref

8. K. Fujii, H. Hao, M. Shibuya, T. Imanaka, M. Fukunaga, K. Miki, H. Tamaru, H. Sawada, Y. Naito, M. Ohyanagi, S. Hirota, T. Masuyama, “Accuracy of OCT, grayscale IVUS, and their combination for the diagnosis of coronary TCFA: An ex vivo validation study,” JACC: Cardiovascular Imaging 8(4), 451-460 (2015).

9. M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I.-K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic Accuracy of Optical Coherence Tomography and Integrated Backscatter Intravascular Ultrasound Images for Tissue Characterization of Human Coronary Plaques,” Journal of the American College of Cardiology 48(1), 81-88 (2006). Crossref

10. J. Rieber, O. Meissner, G. Babaryka, S. Reim, M. Oswald, A. Koenig, T. M. Schiele, M. Shapiro, K. Theisen, M. F. Reiser, V. Klauss, and U.Hoffmann, “Diagnostic accuracy of optical coherence tomography and intravascular ultrasound for the detection and characterization of atherosclerotic plaque composition in ex-vivo coronary specimens: A comparison with histology,” Coronary Artery Disease 17(5), 425-430 (2006).

11. M. Okubo, M. Kawasaki, Y. Ishihara, U. Takeyama, S. Yasuda, T. Kubota, S. Tanaka, T. Yamaki, S. Ojio, K. Nishigaki, G. Takemura, M. Saio, T. Takami, H. Fujiwara, and S. Minatoguchi, “Tissue characterization of coronary plaques - Comparison of integrated backscatter intravascular ultrasound with virtual histology intravascular ultrasound,” Circulation Journal 72(10), 1631-1639 (2008).

12. F. Alfonso, J. Dutary, M. Paulo, N. Gonzalo, M. Pérez-Vizcayno, P. Jiménez-Quevedo, J. Escaned, C. Bañuelos, R. Hernández, and C. Macaya, “Combined use of optical coherence tomography and intravascular ultrasound imaging in patients undergoing coronary interventions for stent thrombosis,” Heart 98(16), 1213-1220 (2012). Crossref

13. L. Räber, J. H. Heo, M. D. Radu, H. M. Garcia-Garcia, G. G. Stefanini, A. Moschovitis, J. Dijkstra, H. Kelbaek, S. Windecker, and P. W. Serruys, “Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques,” EuroIntervention 8(1), 98-108 (2012). Crossref

14. R. S. C. Cobbold, Foundations of Biomedical Ultrasound, Oxford University Press, USA (2006). ISBN: 978-0195168310

15. A. Ng, and J. Swanevelder, “Resolution in ultrasound imaging,” Contin Educ Anaesth Crit Care Pain 11(5), 186-192 (2011).

16. A. Okamura, K. Iwakura, and K. Fujii, “ViewIT improves intravascular ultrasound-guided wiring in coronary intervention of chronic total occlusion,” Catheterization and Cardiovascular Interventions 75(7), 1062-1066 (2010).

17. S. Tanaka, K. Sakamoto, R. Yamada, K. Nakagawa, P. G. Yock, P. J. Fitzgerald, F. Ikeno, and Y. Honda, “Plaque assessment with a novel high-definition 60-MHz IVUS imaging system: comparison with conventional 40MHz IVUS and Optical Coherence Tomography,” J Am Coll Cardiol 61(10_S), E1878 (2013).

18. Y. Kobayashi, H. Kitahara, S. Tanaka, K. Nakagawa, K. Okada, K. Otagiri; P. Yock, P. Fitzgerald, F. Ikeno, and Y. Honda, “TCT-363 Precision of a Novel High-Definition 60MHz IVUS in Quantitative Measurement: Comparison with Conventional 40MHz IVUS and Optical Coherence Tomography,” J Am Coll Cardiol 64(11_S), B105–B106 (2014).

19. G. J. Tearney, M. E. Brezinski, S. A. Boppart, B. E. Bouma, N. Weissman, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, “Catheter-based optical imaging of a human coronary artery,” Circulation 94(11), 3013-3013 (1996). Crossref

20. S.-J. Park, Y.-H. Kim, S.-W. Lee, and S.-W. Park, “Left main interventions: treatment of serious potential complications,” Chapter 15 (Section E) in Handbook of Complications during Percutaneous Cardiovascular Interventions, Informa UK Ltd, 211-218 (2007).

21. J. Yin, H.-C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K. B. Kirk Shung, and Z. Chen, “Integrated intravascular optical coherence tomography ultrasound imaging system,” Journal of biomedical optics 15(1), 010512 (2010). Crossref

22. J. Yin, X. Li, J. Jing, J. Li, D. Mukai, S. Mahon, A. Edris, K. Hoang, K. Kirk Shung, M. Brenner, J. Narula, Q. Zhou, and Z. Chen, “Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging,” Journal of Biomedical Optics 16(6), 060505 (2011). Crossref

23. B. H. Li, A. S. O. Leung, A. Soong, C. E. Munding, H. Lee, A. S. Thind, N. R. Munce, G. A. Wright, C. H. Rowsell, V. X. D. Yang, B. H. Strauss, F. Stuart Foster, and B. K. Courtney, “Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis,” Catheterization and Cardiovascular Interventions 81(3), 494-507 (2013). Crossref

24. J. Li, X. Li, D. Mohar, A. Raney, J. Jing, J. Zhang, A. Johnston, S. Liang, T. Ma, K. K. Shung, S. Mahon, M. Brenner, J. Narula, Q. Zhou, P. M. Patel, and Z. Chen, “Integrated IVUS-OCT for real-time imaging of coronary atherosclerosis,” JACC: Cardiovascular Imaging 7(1), 101-103 (2014). Crossref

25. X. Li, J. Li, J. Jing, T. Ma, S. Liang, J. Zhang, D. Mohar, A. Raney, S. Mahon, M. Brenner, P. Patel, K. K. Shung, Q. Zhou, and Z. Chen, “Integrated IVUS-OCT Imaging for Atherosclerotic Plaque Characterization,” IEEE Journal on Selected Topics in Quantum Electronics 20(2), 6573330 (2014). Crossref

26. J. Li, T. Ma, D. Mohar, E. Steward, M. Yu, Z. Piao, Y. He, K. K. Shung, Q. Zhou, P. M. Patel, and Z. Chen, “Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo,” Scientific Reports 5, 18406 (2015).

27. T.-H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. S. Heim, M. F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, A. E. Cable, and J. G. Fujimoto, “Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology,” Biomedical Optics Express 4(7), 1119-1132 (2013). Crossref

28. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Optics Express 14(8), 3225-3237 (2006). Crossref

29. X. Li, J. Yin, C. Hu, Q. Zhou, K. K. Shung, and Z. Chen, “High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe,” Applied Physics Letters 97(13), 133702 (2010). Crossref

30. H.-C. Yang, J. Yin, C. Hu, J. Cannata, Q. Zhou, J. Zhang, Z. Chen, and K. K. Shung, “A dual-modality probe utilizing intravascular ultrasound and optical coherence tomography for intravascular imaging applications,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 57(12), 2839-2843 (2010). Crossref

31. J. Li, T. Ma, J. Jing, J. Zhang, P. M. Patel, K. Kirk Shung, Q. Zhou, and Z. Chen, “Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display,” Journal of Biomedical Optics 18(10), 100502 (2013). Crossref

32. J. Li, J. Yin, X. Li, J. Jing, D. Mukai, S. Mahon, A. Edris, K. Hoang, K. K. Shung, M. Brenner, J. Narula, Q. Zhou, P. Patel, and Z. Chen, “Miniature integrated optical coherence tomography (OCT) - ultrasound (US) probe for intravascular imaging,” Proceedings of the SPIE 8207, 82073X (2012).

33. J. Li, T. Ma, D. Mohar, A. Correa, H. Minami, J. Jing, Q. Zhou, P. M. Patel, and Z, Chen, “Diagnostic accuracy of integrated intravascular ultrasound and optical coherence tomography (IVUS-OCT) system for coronary plaque characterization,” Proceedings of the SPIE 8926, 892635 (2014).

34. J. Li, H. Minami, E. Steward, T. Ma, D. Mohar, C. Robertson, K. Shung, Q. Zhou, P. Patel, and Z. Chen, “Optimal flushing agents for integrated optical and acoustic imaging systems,” Journal of Biomedical Optics 20(5), 056005 (2015). Crossref

35. R. Waksman, H. Kitabata, F. Prati, M. Albertucci, and G. S. Mintz, “Intravascular ultrasound versus optical coherence tomography guidance,” Journal of the American College of Cardiology 62(17 SUPPL), S32-S40 (2013).

36. H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary Optical Coherence Tomography: A Comprehensive Review. Clinical and Research Applications,” JACC: Cardiovascular Interventions 2(11), 1035-1046 (2009). Crossref

37. Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circulation Journal 76(4), 922-927 (2012). Crossref

38. V. V. Tuchin, D. M. Zhestkov, A. N. Bashkatov, and E. A. Genina, “Theoretical study of immersion optical clearing of blood in vessels at local hemolysis,” Optics Express 12(13), 2966-2971 (2004). Crossref

39. X. Xu, R. K. Wang, J. B. Elder, and V. V. Tuchin, “Effect of dextran-induced changes in refractive index and aggregation on optical properties of whole blood,” Physics in Medicine and Biology 48(9), 1205-1221 (2003). Crossref

40. M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 103(15), 1999-2003 (2001). Crossref

41. E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, I. Yu. Yanina, and V. V. Tuchin, “Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy,” J of Biomedical Photonics & Eng l(1), 22-58 (2015). Crossref

42. V. V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Applied Optics 41(1), 258-271 (2002). Crossref

43. K. Ohtsuki, M. Hayase, K. Akashi, S. Kopiwoda, and H. W. Strauss, “Detection of monocyte chemoattractant protein-1 receptor expression in experimental atherosclerotic lesions: An autoradiographic study,” Circulation 104(2), 203-208 (2001). Crossref

44. F. D. Kolodgie, A. Petrov, R. Virmani, N. Narula, J. W. Verjans, D. K. Weber, D. Hartung, N. Steinmetz, J. L. Vanderheyden, M. A. Vannan, H. K. Gold, C. P. M. Reutelingsperger, L. Hofstra, and J. Narula, “Targeting of Apoptotic Macrophages and Experimental Atheroma with Radiolabeled Annexin V: A Technique with Potential for Noninvasive Imaging of Vulnerable Plaque,” Circulation 108(25), 3134-3139 (2003). Crossref

45. P. Schoenhagen, K. M. Ziada, D. G. Vince, S. E. Nissen, and E. M. Tuzcu, “Arterial remodeling and coronary artery disease: the concept of “dilated” versus “obstructive” coronary atherosclerosis,” Journal of the American College of Cardiology 38(2), 297-306 (2001). Crossref

46. G. J. Tearney, I.-K. Jang, and B. E. Bouma, “Optical coherence tomography for imaging the vulnerable plaque,” Journal of Biomedical Optics 11(2), 021002 (2006). Crossref

47. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” Journal of Biomedical Optics 13(3), 034003 (2008). Crossref

48. G. Van Soest, T. Goderie, E. Regar, S. Koljenovi?, G. L. J. H. Van Leenders, N. Gonzalo, S. Van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. Wolter Oosterhuis, P. W. Serruys, and A. F. W. Van Der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” Journal of Biomedical Optics 15(1), 011105 (2010).

49. N. Gonzalo, J. Escaned, F. Alfonso, P. Jiménez-Quevedo, B. Zakhem, C. Bañuelos, R. Hernández-Antolín, and C. Macaya, “Is refined OCT guidance of stent implantation needed?” EuroIntervention 6(Suppl G), G145-153 (2010).

50. A. V. Finn, M. Joner, G. Nakazawa, F. Kolodgie, J. Newell, M. C. John, H. K. Gold, and R. Virmani, “Pathological correlates of late drug-eluting stent thrombosis: Strut coverage as a marker of endothelialization,” Circulation 115(18), 2435-2441 (2007). Crossref

51. N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, H. M. Garcia-Garcia, Y. Onuma, R. J. Van Geuns, J. Ligthart, and E. Regar, “Relation between plaque type and dissections at the edges after stent implantation: An optical coherence tomography study,” International Journal of Cardiology 150(2), 151-155 (2011). Crossref

52. S. Tahara, H. G. Bezerra, V. Sirbu, H. Kyono, G. Musumeci, N. Rosenthal, G. Guagliumi, and M. A. Costa, “Angiographic, IVUS and OCT evaluation of the long-term impact of coronary disease severity at the site of overlapping drug-eluting and bare metal stents: A substudy of the ODESSA trial,” Heart 96(19), 1574-1578 (2010). Crossref

53. F. Alfonso, M. Paulo, N. Gonzalo, J. Dutary, P. Jimenez-Quevedo, V. Lennie, J. Escaned, C. Bauelos, R. Hernandez, and C. MacAya, “Diagnosis of spontaneous coronary artery dissection by optical coherence tomography,” Journal of the American College of Cardiology 59(12), 1073-1079 (2012). Crossref

54. L. Misuraca, F. De Caro, C. Grigoratos, M. De Carlo, and A. S. Petronio, “OCT-guided stenting of a spontaneous coronary artery dissection,” Cardiovascular Revascularization Medicine 13(5), 301-303 (2012). Crossref

55. K. Poon, A. Incani, A. Small, and O. C. Raffel, “Drug eluting stents trapping intramural hematoma in spontaneous coronary artery dissection and healing pattern at six months: Optical coherence tomography findings,” Cardiovascular Revascularization Medicine 14(3), 183-186 (2013). Crossref

56. M. Paulo, J. Sandoval, V. Lennie, J. Dutary, M. Medina, N. Gonzalo, P. Jimenez-Quevedo, J. Escaned, C. Bañuelos, R. Hernandez, C. Macaya, and F. Alfonso, “Combined use of OCT and IVUS in spontaneous coronary artery dissection,” JACC: Cardiovascular Imaging 6(7), 830-832 (2013).

57. The Global Market for Intravascular Ultrasound Tools and Ancillary Equipment, BCC Research

58. P. R. Moreno, R. A. Lodder, K. R. Purushothaman, W. E. Charash, W. N. O'Connor, J. E. Muller, “Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy,” Circulation 105(8), 923-927 (2002).

59. J. Wang, Y.-J. Geng, B. Guo, T. Klima, B. N. Lal, J. T. Willerson, and W. Casscells, “Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques,” Journal of the American College of Cardiology 39(8), 1305-1313 (2002). Crossref

60. P. Wang, T. Ma, M. N. Slipchenko, S. Liang, J. Hui, K. K. Shung, S. Roy, M. Sturek, Q. Zhou, Z. Chen, and J.-X. Cheng, “High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz Barium Nitrite Raman Laser,” Scientific Reports 4, 6889 (2014). Crossref

61. B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “In vivo Intravascular Ultrasound-guided Photoacoustic Imaging of Lipid in Plaques Using an Animal Model of Atherosclerosis,” Ultrasound in Medicine and Biology 38(12), 2098-2103 (2012). Crossref

62. Z. Piao, T. Ma, J. Li, M. Wiedmann, S. Huang, M. Yu, K. K. Shung, Q. Zhou, C. S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast OPO laser at 1.7 ?m,” Applied Physics Letters 107(8), 083701 (2015). Crossref

63. W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” Journal of Biomedical Optics 16(10), 106001 (2011). Crossref

64. X. Li, W. Wei, Q. Zhou, K. K. Shung, and Z. Chen, “Intravascular photoacoustic imaging at 35 and 80 MHz,” Journal of Biomedical Optics 17(10), 106005 (2012). Crossref

65. B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: Fundamentals, techniques and prospects,” IEEE Journal on Selected Topics in Quantum Electronics 20(2), 6670078 (2014). Crossref

66. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Optics Express 14(24), 11585-11597 (2006). Crossref

67. J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Optics Letters 40(9), 2099-2102 (2015). Crossref

68. W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Applied Physics Letters 103(10), 103704 (2013). Crossref

69. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” Journal of Biomedical Optics 17(11), 110505 (2012). Crossref

70. W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer, ” Applied Physics Letters 104(12), 123702 (2014). Crossref

© 2014-2020 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+