Method of autofluorescence diagnostics of skin neoplasms in the near infrared region

Yulia A. Khristoforova (Login required)
Laser and biotechnical systems department, Samara State Aerospace University, Russia

Ivan A. Bratchenko
Laser and biotechnical systems department, Samara State Aerospace University, Russia

Dmitry N. Artemyev
Laser and biotechnical systems department, Samara State Aerospace University, Russia

Oleg O. Myakinin
Laser and biotechnical systems department, Samara State Aerospace University, Russia

Sergey V. Kozlov
Oncology Department, Samara State Medical University, Russia

Alexander A. Moryatov
Oncology Department, Samara State Medical University, Russia

Valery P. Zakharov
Laser and biotechnical systems department, Samara State Aerospace University, Russia


Paper #2887 received 2015.12.02; accepted for publication 2015.12.20; published online 2015.12.29.

DOI: 10.18287/jbpe-2015-1-3-186

Abstract

We propose a method for the diagnostics of skin neoplasms, based on the analysis of the changes in the autofluorescence spectra in the near infrared range. The autofluorescence was excited by means of the laser radiation with the wavelength 785 nm for ex vivo and in vivo studies with subsequent exponential approximation of its spectrum. The quantitative and qualitative criteria for the neoplasm type differentiation by the change of the curvature and the rate of decrease of the approximating curve are found. It is shown that the proposed approach allows the diagnostics of malignant melanomas with the accuracy of 88.4% for ex vivo studies, and 86.2 % for in vivo ones.

Keywords

autofluorescence; near IR range; dermatology; melanoma; exponential approximation; sensitivity; specificity

Full Text:

PDF

References


1. P. Bourne, C. Rosendabl, J. Keir, and A. Cameron, “A diagnostic algorithm for skin cancer diagnosis combining clinical features with dermatoscopy findings,” Research Dermatol. Pract. Concept. 2(2), 55-61 (2012).

2. M. Mogensen, L. Thrane, and T. M. Jorgensen, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442-451 (2009). Crossref

3. M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20MHz ultrasound,” Brit. J. Dermatol. 160(5), 1026-1033 (2009).

4. N. Aspres, I. B. Egerton, and A. C. Lim, “Imaging the skin,” Austral. J. Dermatol. 44(1), 19-27 (2003). Crossref

5. H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491-2500 (2012). Crossref

6. V. P. Zakharov, I. A. Bratchenko, D. N. Artemyev, O. O. Myakinin, D. V. Kornilin, S. V. Kozlov, and A. A. Moryatov , “Comparative analysis of combined spectral and optical tomography methods for detection of skin and lung cancers,” J. Biomed. Opt. 20(2), 025003 (2015). Crossref

7. J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Applied Spectroscopy 61(11), 1225-1232 (2007). Crossref

8. E. G. Borisova, L. P. Angelova, and E. P. Pavlova, “Endogenous and Exogenous Fluorescence Skin Cancer Diagnostics for Clinical Applications,” IEEE J of Selected Topics in Quantum Electronics 20(2), 7100412 (2014). Crossref

9. N. Baletic, H. Malicevic, Z. Petrovic, J. Marinkovic-Eric, and A. Peric, “Advantages and limitations of the autofluorescent diagnostics of the laryngeal cancer and precancerosis,” Eur. Arch. Otorhinolaryngol. 267(6), 925-931 (2010). Crossref

10. V. P. Zakharov, I. A. Bratchenko, D. N. Artemyev, O. O. Myakinin, D. V. Kornilin, S. V. Kozlov, and A. A. Moryatov, “Lung neoplasm diagnostics using Raman spectroscopy and autofluorescence analysis,” J. Biomed. Photonics and Eng. 1(1), 70-6 (2015). Crossref

11. W. Lo, Y. L. Chang, Y. Sun, S. J. Lin, and S. H. Jee, “In-vitro visualization of corneal wound healing in an organ culture model using multiphoton autofluorescence and second harmonic generation microscopy,” Proc. of SPIE 6426, 642617 (2007).

12. L. Rovati, and F. Docchio, “Autofluorescence methods in ophthalmology,” J. Biomed. Opt. 9(1), 9-21 (2004). Crossref

13. E. G. Borisova, E. Nikolova, P. P. Troyanova, and L. A. Avramov, “Autofluorescence and diffuse reflectance spectroscopy of pigment disorders in human skin,” Journal of Optoelectronics and Advanced Materials 10(3), 717-722 (2008).

14. Z. Huang, H. Zeng, I. Hamzavi, D. McLean, and H. Lui, “Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements,” Opt. Lett. 26(22), 1782-1784 (2001). Crossref

15. J. A. Nelder, and R. Mead, “A simple method for function minimization,” Computer Journal 7, 308-313 (1965). Crossref

16. G. M. Fikhtengol’ts, The fundamentals of mathematical analysis: International series in pure and applied mathematics, 1st ed., Pergamon (1965). ISBN: 978-0080134734

17. D. Y. Churmakov, I. V. Meglinski, S. A. Piletsky, and D. A. Greenhalgh, “Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation,” Journal of Physics D: Applied Physics 36(14), 1722-1728 (2003). Crossref

18. S. K Majumder., M. D. Keller, F. I. Boulos, M. C. Kelley, and A. Mahadevan-Jansen, “Comparison of autofluorescence, diffuse reflectance, and Raman spectroscopy for breast tissue discrimination,” J. Biomed. Opt. 13(5), 054009 (2008). Crossref

19. V. V. Tuchin, Tissue optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd ed., SPIE Press, Washington Bellingham, (2015). ISBN: 9781628415162.

20. S. Wang, J. Zhao, H. Lui, Q. He, and H. Zeng, “In vivo near infrared autofluorescence imaging of pigmented skin lesions: methods, technical improvements and preliminary clinical results,” Skin Research and Technology 19(1), 20-26 (2013). Crossref

21. A. B. Pravdin, S. R. Utz, A. A. Al’khov, and A. N. Bashkatov, “Upper epidermis autofluorescence dynamics under laser UV irradiation,” Proc. SPIE 2100, 233-236 (1994). Crossref

22. L. Lim, B. Nichols, M. Midgen, N. Rajaram, J. Reichenberg, M. Markey, M. Ross, and J. Tunnell, “Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis,” J. Biomed. Opt.19(11), 117003 (2014).

23. E. Borisova, D. Dogandjiiska, I. Bliznakovaa, L. Avramova, E. Pavlova, and P. Troyanovad, “Multispectral autofluorescence diagnosis of non-melanoma cutaneous tumors,” Proc. of SPIE-OSA 7368, 736823 (2009). Crossref

24. E. Borisova, P. Troyanova, P. Pavlova, L. and Avramov, “Diagnostic pigment skin neoplasms by laser-induced autofluorescence and diffusely reflectance spectroscopy,” Quantum Electronics 38(6), 597-605 (2008). Crossref






© 2014-2017 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+