Optical diffraction tomography techniques for the study of cell pathophysiology

Kyoohyun Kim
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
KAIST Institute of Health Science and Technology, Daejeon, Republic of Korea

Jonghee Yoon
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
KAIST Institute of Health Science and Technology, Daejeon, Republic of Korea

Seungwoo Shin
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
KAIST Institute of Health Science and Technology, Daejeon, Republic of Korea

SangYun Lee
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
KAIST Institute of Health Science and Technology, Daejeon, Republic of Korea

Su-A Yang
Department of Biological Sciences, KAIST, Daejeon, Republic of Korea

YongKeun Park (Login required)
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
KAIST Institute of Health Science and Technology, Daejeon, Republic of Korea
TOMOCUBE, Inc., Daejeon, Republic of Korea


Paper #2994 received 2016.03.02; revised manuscript received 2016.05.23; accepted for publication 2016.05.23; published online 2016.06.14.

DOI: 10.18287/JBPE16.02.020201

Abstract

Three-dimensional imaging of biological cells is crucial for the investigation of cell biology, providing valuable information to reveal the mechanisms behind pathophysiology of cells and tissues. Recent advances in optical diffraction tomography (ODT) have demonstrated the potential for the study of various cells with its unique advantages of quantitative and label-free imaging capability. To provide insight on this rapidly growing field of research and to discuss its applications in biology and medicine, we present the summary of the ODT principle and highlight recent studies utilizing ODT with the emphasis on the applications to the pathophysiology of cells.

Keywords

optical diffraction tomography; quantitative phase imaging; biomedical imaging

Full Text:

PDF

References


1. D. J. Stephens, and V. J. Allan, “Light microscopy techniques for live cell Imaging,” Science 300, 82-86 (2003).

2. M. Minsky, “Microscopy apparatus,” US 3,013,467 (Dec. 19 1961).

3. W. Denk, J. P. Strickler, and W. W. Webb, “Two-photon laser microscopy,” US 5,034,613 (Jul. 23 1991).

4. B. Huang, M. Bates, and X. Zhuang, “Super resolution fluorescence microscopy,” Annual Review of Biochemistry 78, 993-1016 (2009).

5. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Optics Communications 1, 153-156 (1969). Crossref

6. R. Dändliker, and K. Weiss, “Reconstruction of the three-dimensional refractive index from scattered waves,” Optics Communications 1(7), 323-328 (1970). Crossref

7. A. F. Fercher, H. Bartelt, H. Becker, and E. Wiltschko, “Image-Formation by Inversion of Scattered Field Data - Experiments and Computational Simulation,” Applied Optics 18(14), 2427-2439 (1979).

8. N. Streibl, “Three-dimensional imaging by a microscope,” Journal of the Optical Society of America A 2(2), 121-127 (1985). Crossref

9. S. Kawata, O. Nakamura, and S. Minami, “Optical Microscope Tomography .1. Support Constraint,” Journal of the Optical Society of America A 4(1), 292-297 (1987). Crossref

10. T. Noda, S. Kawata, and S. Minami, “Three-dimensional phase contrast imaging by an annular illumination microscope,” Applied Optics 29(26), 3810-3815 (1990). Crossref

11. A. J. Devaney, and A. Schatzberg, “Coherent optical tomographic microscope,” Proc. of SPIE 1767, 62-71 (1992). Crossref

12. G. Vishnyakov and G. Levin, “Optical microtomography of phase objects,” Optics and Spectroscopy 85(1), 73-77 (1998).

13. A. C. Kak, and M. Slaney, “Principles of computerized tomographic imaging,” Classics in applied mathematics (Society for Industrial and Applied Mathematics, Philadelphia, 2001). ISBN: 978-0-89871-494-4.

14. O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” Journal of Modern Optics 57(9), 686-699 (2010). Crossref

15. P. Müller, M. Schürmann, and J. Guck, “The Theory of Diffraction Tomography,” arXiv preprint (2015).

16. T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser & Photonics Reviews 10, 13-39 (2016). Crossref

17. G. Popescu, Quantitative phase imaging of cells and tissues, 1st. ed., McGraw-Hill biophotonics, New York (2011).

18. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors 13(4), 4170-4191 (2013). Crossref

19. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1(1), 018005 (2010).

20. S. K. Debnath, and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Optics Letters 36(23), 4677-4679 (2011). Crossref

21. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” Journal of Microscopy 205(2), 165-176 (2002). Crossref

22. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Methods 4, 717-719 (2007). Crossref

23. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nature Photonics 7(2), 113-117 (2013). Crossref

24. K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. C. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Optics Letters 39(24), 6935-6938 (2014). Crossref

25. A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Optics Communications 175(4-6), 329-336 (2000). Crossref

26. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Optics Letters 31(2), 178-180 (2006). Crossref

27. A. Ku?, M. Dudek, B. Kemper, M. Kujawi?ska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” Journal of Biomedical Optics 19(4), 046009 (2014). Crossref

28. A. Ku?, W. Krauze, and M. Kujawi?ska, “Limited-angle, holographic tomography with optically controlled projection generation,” Proc. of SPIE 9330, 933007 (2015). Crossref

29. S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Optics Letters 40(22), 5407-5410 (2015). Crossref

30. S. Shin, K. Kim, T. Kim, J. Yoon, K. Hong, J. Park, and Y. Park, “Optical diffraction tomography using a digital micromirror device for stable measurements of 4-D refractive index tomography of cells,” Proc. of SPIE 9718, 971814 (2016). Crossref

31. W.-H. Lee, “Binary computer-generated holograms,” Applied Optics 18(21), 3661-3669 (1979). Crossref

32. W. Gorski, “Tomographic microinterferometry of optical fibers,” Optical Engineering 45(12), 125002 (2006).

33. J. Kostencka, T. Kozacki, A. Kus, and M. Kujawinska, “Accurate approach to capillary-supported optical diffraction tomography,” Optics Express 23(6), 7908-7923 (2015). Crossref

34. P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, “3D morphometry of red blood cells by digital holography,” Cytometry part A 85(12), 1030-1036 (2014).

35. M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180 degrees rotation of live cells in suspension by holographic optical tweezers,” Optics Letters 40(8), 1881-1884 (2015). Crossref

36. P. Müller, M. Schürmann, C. J. Chan, and J. Guck, “Single-cell diffraction tomography with optofluidic rotation about a tilted axis,” Proc. of SPIE 9548, 95480U (2015).

37. K. G. Phillips, S. L. Jacques, and O. J. McCarty, “Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope,” Physical Review Letters 109(11), 118105 (2012). Crossref

38. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” Journal of Biomedical Optics 19(1), 011005 (2014). Crossref

39. P. Bon, S. Aknoun, S. Monneret, and B. Wattellier, “Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination,” Optics Express 22(7), 8654-8671 (2014). Crossref

40. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Optics Letters 30(16), 2092-2094 (2005). Crossref

41. J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Optics Letters 34(5), 653-655 (2009). Crossref

42. S. O. Isikman, W. Bishara, S. Mavandadi, W. Y. Frank, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proceedings of the National Academy of Sciences of the United States of America 108(18), 7296-7301 (2011). Crossref

43. R. Horstmeyer, and C. Yang, “Diffraction tomography with Fourier ptychography,” arXiv preprint (2015).

44. W. Gorski and M. Kujawinska, “Three-dimensional reconstruction of refractive index inhomogeneities in optical phase elements,” Optics and Lasers in Engineering 38(6), 373-385 (2002). Crossref

45. F. Charriere, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Optics Express 14(16), 7005-7013 (2006). Crossref

46. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proceedings of the National Academy of Sciences of the United States of America 105(37), 13730-13735 (2008). Crossref

47. R. Chandramohanadas, Y. Park, L. Lui, A. Li, D. Quinn, K. Liew, M. Diez-Silva, Y. Sung, M. Dao, C. T. Lim, P. R. Preiser, and S. Suresh, “Biophysics of malarial parasite exit from infected erythrocytes,” PloS One 6(6), e20869 (2011). Crossref

48. Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Optics Express 17(1), 266-277 (2009). Crossref

49. W. Gorski and W. Osten, “Tomographic imaging of photonic crystal fibers,” Optics Letters 32(14), 1977-1979 (2007). Crossref

50. T. M. Habashy, R. W. Groom, and B. R. Spies, “Beyond the Born and Rytov Approximations - a Nonlinear Approach to Electromagnetic Scattering,” Journal of Geophysical Research-Solid Earth 98(B2), 1759-1775 (1993). Crossref

51. A. J. Devaney, “Inverse-Scattering Theory within the Rytov Approximation,” Optics Letters 6(8), 374-376 (1981). Crossref

52. B. Q. Chen, and J. J. Stamnes, “Validity of diffraction tomography based on the first Born and the first Rytov approximations,” Applied Optics 37(14), 2996-3006 (1998). Crossref

53. S. S. Kou, and C. J. R. Sheppard, “Image formation in holographic tomography,” Optics Letters 33(20), 2362-2364 (2008). Crossref

54. S. S. Kou, and C. J. R. Sheppard, “Image formation in holographic tomography: high-aperture imaging conditions,” Applied Optics 48(34), H168-H175 (2009).

55. S. Vertu, J. J. Delaunay, I. Yamada, and O. Haeberle, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Central European Journal of Physics 7(1), 22-31 (2009).

56. J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Optics Express 23(13), 16933-16948 (2015). Crossref

57. Y. J. Sung, and R. R. Dasari, “Deterministic regularization of three-dimensional optical diffraction tomography,” Journal of the Optical Society of America A 28(8), 1554-1561 (2011). Crossref

58. U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica 2(6), 517-522 (2015). Crossref

59. S. Vertu, J. Flugge, J. J. Delaunay, and O. Haeberle, “Improved and isotropic resolution in tomographic diffractive microscopy combining sample and illumination rotation,” Central European Journal of Physics 9(4), 969-974 (2011).

60. R. Barer, “Interference microscopy and mass determination,” Nature 169(4296), 366-367 (1952).

61. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” American Journal of Physiology-Cell Physiology 295(2), C538-C544 (2008).

62. K. E. Handwerger, J. A. Cordero, and J. G. Gall, “Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure,” Molecular Biology of the Cell 16(1), 202-211 (2005). Crossref

63. M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proceedings of the National Academy of Sciences of the United States of America 108(32), 13124-13129 (2011).

64. H. Y. Zhao, P. H. Brown, and P. Schuckt, “On the Distribution of Protein Refractive Index Increments,” Biophysical Journal 100(9), 2309-2317 (2011). Crossref

65. Y. J. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proceedings of the National Academy of Sciences of the United States of America 110(41), 16687-16692 (2013). Crossref

66. Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Scientific Reports 4, 6659 (2014). Crossref

67. Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Optics Express 22(9), 10398-10407 (2014). Crossref

68. H. Park, T. Ahn, K. Kim, S. Lee, S. Y. Kook, D. Lee, I. B. Suh, S. Na, and Y. Park, “Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood,” Journal of Biomedical Optics 20(11), 111208 (2015). Crossref

69. H. Park, S. H. Hong, K. Kim, S. H. Cho, W. J. Lee, Y. Kim, S. E. Lee, and Y. Park, “Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy,” Scientific Reports 5, 10827 (2015). Crossref

70. H. Park, M. Ji, S. Lee, K. Kim, Y.-H. Sohn, S. Jang, and Y. Park, “Alterations in cell surface area and deformability of individual human red blood cells in stored blood,” arXiv preprint (2015).

71. S. Y. Lee, H. J. Park, C. Best-Popescu, S. Jang, and Y. K. Park, “The Effects of Ethanol on the Morphological and Biochemical Properties of Individual Human Red Blood Cells,” PloS One 10(12), e0145327 (2015). Crossref

72. J. Yoon, K. Kim, H. Park, C. Choi, S. Jang, and Y. Park, “Label-free characterization of white blood cells by measuring 3D refractive index maps,” Biomedical Optics Express 6(10), 3865-3875 (2015). Crossref

73. K. Kim, J. Yoon, and Y. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2(4), 343-346 (2015). Crossref

74. Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Physical Review Applied 1(1), 014002 (2014). Crossref

75. Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-Free Quantification of Chromosomes in Live Cells Using Regularized Tomographic Phase Microscopy,” PloS One 7(11), e49502 (2012). Crossref

76. S. E. Lee, K. Kim, J. Yoon, J. H. Heo, H. Park, C. Choi, and Y. Park, “Label-free quantitative imaging of lipid droplets using quantitative phase imaging techniques,” in Asia Communications and Photonics Conference 2014, Optical Society of America, ATh1I.3 (2014).

77. J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Optics Express 24(3), 2006-2012 (2016). Crossref

78. W. Krauze, P. Makowski, M. Kujawi?ska, and A. Ku?, “Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography,” Optics Express 24(5), 4924-4936 (2016). Crossref

79. R. Zonneveld, G. Molema, and F. B. Plötz, “Analyzing Neutrophil Morphology, Mechanics, and Motility in Sepsis: Options and Challenges for Novel Bedside Technologies,” Critical Care Medicine 44(1), 218-228 (2016). Crossref

80. J. W. Su, W. C. Hsu, C. Y. Chou, C. H. Chang, and K. B. Sung, “Digital holographic microtomography for high?resolution refractive index mapping of live cells,” Journal of Biophotonics 6(5), 416-424 (2013). Crossref

81. W.-C. Hsu, J.-W. Su, T.-Y. Tseng, and K.-B. Sung, “Tomographic diffractive microscopy of living cells based on a common-path configuration,” Optics Letters 39(7), 2210-2213 (2014). Crossref

82. C. Fang-Yen, W. Choi, Y. J. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” Journal of Biomedical Optics 16(1), 011005 (2011). Crossref

83. J. Yoon, S.-A. Yang, K. Kim, and Y. Park, “Quantitative characterization of neurotoxicity effects on individual neuron cells using optical diffraction tomography,” in Asia Communications and Photonics Conference 2015, Optical Society of America, ASu4G.4 (2015).

84. S. Cho, S. Kim, Y. Kim, and Y. K. Park, “Optical imaging techniques for the study of malaria,” Trends in Biotechnology 30(2), 71-79 (2011). Crossref

85. J. R. Cursino-Santos, G. Halverson, M. Rodriguez, M. Narla, and C. A. Lobo, “Identification of binding domains on red blood cell glycophorins for Babesia divergens,” Transfusion 54(4), 982-989 (2014). Crossref

86. Y. I. Jeong, S. H. Hong, S. H. Cho, W. J. Lee, and S. E. Lee, “Induction of IL-10-producing CD1dhighCD5+ regulatory B cells following Babesia microti-infection,” PloS One 7(10), e46553 (2012). Crossref

87. M. J. Homer, I. Aguilar-Delfin, S. R. Telford, P. J. Krause, and D. H. Persing, “Babesiosis,” Clinical Microbiology Reviews 13(3), 451-469 (2000). Crossref

88. A. M. Kjemtrup, and P. A. Conrad, “Human babesiosis: an emerging tick-borne disease,” International Journal for Parasitology 30(12-13), 1323-1337 (2000). Crossref

89. B. Simon, M. Debailleul, A. Beghin, Y. Tourneur, and O. Haeberle, “High-resolution tomographic diffractive microscopy of biological samples,” Journal of Biophotonics 3(7), 462-467 (2010). Crossref

90. W.-C. Hsu, J.-W. Su, C.-C. Chang, and K.-B. Sung, “Investigating the backscattering characteristics of individual normal and cancerous cells based on experimentally determined three-dimensional refractive index distributions,” Proc. of SPIE 8553, 85531O (2012). Crossref

91. C. Zuo, J. S. Sun, J. L. Zhang, Y. Hu, and Q. Chen, “Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix,” Optics Express 23(11), 14314-14328 (2015). Crossref

92. K. Lee, and Y. Park, “Quantitative phase imaging unit,” Optics Letters 39(12), 3630-3633 (2014). Crossref

93. S. Shin, Y. Kim, K. Lee, K. Kim, Y.-J. Kim, H. Park, and Y. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. of SPIE 9336, 933629 (2015). Crossref

94. P. Hosseini, Y. J. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Optics Express 23(15), 19752-19762 (2015). Crossref

95. J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy [Invited],” Applied Optics 53(27), G111-G122 (2014).

96. As of Feb 2016, there are two companies provide ODT systems: Tomocube (www.tomocube.com) and Nanolive (www.nanolive.ch).

97. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Physical Review Letters 104(10), 100601 (2010). Crossref

98. H. Yu, T. R. Hillman, W. Choi, J. O. Lee, M. S. Feld, R. R. Dasari, and Y. Park, “Measuring Large Optical Transmission Matrices of Disordered Media,” Physical Review Letters 111(15), 153902 (2013).

99. J. Yoon, K. Lee, J. Park, and Y. Park, “Measuring optical transmission matrices by wavefront shaping,” Optics Express 23(8), 10158-10167 (2015). Crossref

100. H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Current Applied Physics 15(5), 632-641 (2015). Crossref

101. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photonics 6(5), 283-292 (2012). Crossref

102. C. Park, J. H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Lee, Y. H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Physical Review Letters 113(11), 113901 (2014). Crossref

103. T. ?ižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nature Communications 3, 1027 (2012). Crossref

104. K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Optics Express 21(26), 32269-32278 (2013). Crossref

105. J. W. Su, Y. H. Lin, C. P. Chiang, J. M. Lee, C. M. Hsieh, M. S. Hsieh, P. W. Yang, C. P. Wang, P. H. Tseng, Y. C. Lee, and K. B. Sung, “Precancerous esophageal epithelia are associated with significantly increased scattering coefficients,” Biomedical Optics Express 6(10), 3795-3805 (2015). Crossref

106. S. Lee, K. Kim, A. Mubarok, A. Panduwirawan, K. Lee, S. Lee, H. Park, and Y. Park, “High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton,” Journal of the Optical Society of Korea 18(6), 691-697 (2014). Crossref

107. S. Lee, K. Kim, Y. Lee, S. Park, H. Shin, J. Yang, K. Ko, H. Park, and Y. Park, “Measurements of morphology and refractive indexes on human downy hairs using three-dimensional quantitative phase imaging,” Journal of Biomedical Optics 20(11), 111207 (2015). Crossref

108. K. Kim, J. Yoon, and Y. Park, “Large-scale optical diffraction tomography for inspection of optical plastic lenses,” Optics Letters 41(5), 934-937 (2016). Crossref






© 2014-2017 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+