Study of immunogenic properties of transmissible gastroenteritis virus antigen conjugated to gold nanoparticles

Pavel V. Mezhenny, Sergej A. Staroverov, Aleksandr S. Fomin, Aleksej A. Volkov, Ivan Y. Domnitsky, Sergej V. Kozlov, Vladislav N. Laskavy, Lev A. Dykman


There was performed the study of immunogenic properties of the transmissible gastroenteritis virus antigen conjugated to gold nanoparticles. In comparative immunobiological studies there was found that immunization of guinea pigs driven by the colloidal gold conjugated to transmissible gastroenteritis virus antigen of swine, leads to activation of the respiratory activity of lymphoid cells and peritoneal macrophages, which is directly related to increased activity of antibody-producing cells and activation of antibody generating. The obtained data suggest that the colloid particles promote antigen presentation to the reticuloendothelial system organs. In addition, there was established that these carriers stimulate production of proinflammatory cytokines, which leads to a complete and consistent immune response of both cellular and humoral components of immune system.


Gold Nanoparticles; nanomaterials; transmissible gastroenteritis virus; cytokines

Full Text:



Q. H. Cheng, and X. Y. Niu, “Investigation on the porcine epidemic diarrhea prevalent on Qinhai,” Vet. Sci. 22, 22-23 (1992).

B. E. Straw, S. D’Allaire, W. L. Mengeling, and D. J. Taylor (eds.) Disease of Swine, Iowa State University Press, Ames (2000).

B. Delmas, J. Gelfi, and H. Laude, “Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein,” J. Gen. Virol. 67(7), 1405-1418 (1986).

L. S. Sturman, C. S. Riehard, and K. V. Holmes, “Proteolytic cleavage of the E2 glycoprotein of murine coronavirus by trypsin and separation of two different 90K cleavage fragments,” J. Gen. Virol. 56(3), 904-911 (1985).

R. A. Moxley, and L. D. Olson, “Clinical evaluation of transmissible gastroenteritis virus vaccines and vaccination procedures for inducing lactogenic immunity in sows,” Am. J. Vet. Res. 50(1), 111-118 (1989).

R. Mout, D. F. Moyano, S. Rana, and V. M. Rotello, “Surface functionalization of nanoparticles for nanomedicine,” Chem. Soc. Rev. 41(7), 2539-2544 (2012).

R. Bhattacharya, and P. Mukherjee, “Biological properties of “naked” metal nanoparticles,” Adv. Drug Del. Rev. 60(11), 1289-1306 (2008).

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev 41(7), 2740-2779 (2012).

L. A. Dykman, and N. G. Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chem. Soc. Rev. 41(6), 2256-2282 (2012).

L. A. Dykman, S. A. Staroverov, V. A. Bogatyrev, and S. Yu. Shchyogolev (eds.), Gold nanoparticles as an antigen carrier and an adjuvant, Nova Science Publishers, New York (2010).

S. A. Staroverov, I. V. Vidyasheva, K. P. Gabalov, O. A. Vasilenko, V. N. Laskavyi, and L. A. Dykman, “Immunostimulatory effect of gold nanoparticles conjugated with transmissible gastroenteritis virus,” Bull. Exp. Biol. Med. 151(4), 436-439 (2011).

S. A. Staroverov, A. A. Volkov, S. V. Larionov, P. V. Mezhennyy, S. V. Kozlov, A. S. Fomin, and L. A. Dykman, “Study of transmissible gastroenteritis virus antigen-conjugated immunogenic properties of selenium nanoparticles and gold,” Life Science J. 11(11), 456-460 (2014).

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature Phys. Sci. 241(105), 20-22 (1973).

N. G. Khlebtsov, and L. A. Dykman, “Optical properties and biomedical applications of plasmonic nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer. 111(1), 1-35 (2010).


  • There are currently no refbacks.

© 2014-2017 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+