Optical properties of human nails in THz frequency range

Victoria A. Guseva
Laboratory of THz Biomedicine, ITMO University, St.Petersburg, Russian Federation

Sviatoslav I. Gusev (Login required)
Laboratory of THz Biomedicine, ITMO University, St.Petersburg, Russian Federation

Petr S. Demchenko
Laboratory of THz Biomedicine, ITMO University, St.Petersburg, Russian Federation

Egor A. Sedykh
Laboratory of THz Biomedicine, ITMO University, St.Petersburg, Russian Federation

Mikhail K. Khodzitsky
Laboratory of THz Biomedicine, ITMO University, St.Petersburg, Russian Federation


Paper #3146 received 2016.11.31; accepted for publication 2016.12.29; published online 2016.12.31.

DOI: 10.18287/JBPE16.02.040306

Abstract

This work is devoted to investigation of optical properties (dispersion of refractive index, permittivity and absorption coefficient) of human nails in THz frequency range. These data were obtained by THz time-domain spectroscopy (TDS) technique in transmission mode. These results may be used to develop non-invasive technique of human pathologies control using nail as a reference sample in reflection mode of THz TDS.

Keywords

Spectroscopy; nail; refractive index; permittivity; absorption; penetration depth

Full Text:

PDF

References


1. Classification and Diagnosis of Diabetes, Diabetes Care 38(Supplement_1), S8–S16 (2014).

2. A. Ceriello, and S. Colagiuri, “International Diabetes Federation guideline for management of postmeal glucose: a review of recommendations,” Diabetic Medicine 25(10), 1151–1156 (2008).

3. L. Northam, and G. Baranoski, “A novel first principles approach for the estimation of the sieve factor of blood samples,” Optics express 18(7), 7456–7469 (2010).

4. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, SPIE-Intl Soc Optical Eng (2015). ISBN: 9780819495860

5. D. P. Popescu, and M. G. Sowa, “In Vitro Assessment of Optical Properties of Blood by Applying the Extended Huygens-Fresnel Principle to Time-Domain Optical Coherence Tomography Signal at 1300 nm,” International Journal of Biomedical Imaging 2008, 1–6 (2008).

6. D. Yim, G. V. G. Baranoski, B. W. Kimmel, T. F. Chen, and E. Miranda, “A Cell-Based Light Interaction Model for Human Blood,” Computer Graphics Forum 31(2pt4), 845–854 (2012).

7. A. Fitzgerald, E. Berry, N. Zinov’ev, S. Homer-Vanniasinkam, R. Miles, J. Chamberlain, and M. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” Journal of Biological Physics 29(2-3), 123–128 (2003).

8. E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Physics in Medicine and Biology 49(9), 1595–1607 (2004).

9. P. H. Siegel, “Terahertz Technology in Biology and Medicine,” IEEE Transactions on Microwave Theory and Techniques 52(10), 2438–2447 (2004).

10. J.-H. Son, Terahertz Biomedical Science and Technology, CRC Press (2014). ISBN 9781466570443

11. S. I. Gusev, M. A. Borovkova, M. A. Strepitov, and M. K. Khodzitsky, “Blood optical properties at various glucose level values in THz frequency range,” Proc. SPIE 9537, 95372A (2015).

12. S. I. Gusev, N. S. Balbekin, E. A. Sedykh, Y. A. Kononova, E. V. Litvinenko, A. A. Goryachuk, V. A. Begaeva, A. Y. Babenko, E. N. Grineva, and M. K. Khodzitsky, “Influence of creatinine and triglycerides concentrations on blood optical properties of diabetics in THz frequency range,” Journal of Physics: Conference Series 735, 012088 (2016).

13. A. Pashkin, M. Kempa, H. Němec, F. Kadlec, and P. Kužel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Review of Scientific Instruments 74(11), 4711–4717 (2003).

14. M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electronics 38(7), 647–654 (2008).

15. V. G. Bespalov, A. A. Gorodetskiĭ, I. Y. Denisyuk, S. A. Kozlov, V. N. Krylov, G. V. Lukomskiĭ, N. V. Petrov, and S. É. Putilin, “Methods of generating superbroadband terahertz pulses with femtosecond lasers,” Journal of Optical Technology 75(10), 636–642 (2008).






© 2014-2017 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+