In vitro spectroscopic investigation of human cataract lens capsule hydropermeability

Andrey V. Belikov
ITMO University, Saint Petersburg, Russia

Alexey M. Zagorulko
St. Petersburg Branch of the S. Fyodorov Eye Microsurgery Federal State Institution, Russia

Vyacheslav I. Kochubey
N.G. Chernyshevsky Saratov State University, Russia
Tomsk State University, Russia

Sergey N. Smirnov (Login required)
ITMO University, Saint Petersburg, Russia

Paper #3214 received 5 Jun 2017; revised manuscript received 14 Sep 2017; accepted for publication 15 Sep 2017; published online 30 Sep 2017.

DOI: 10.18287/JBPE17.03.030303


The dynamics of collimated transmission of optical radiation in the wavelength range 1100-2000 nm during the in vitro dehydration of human cataract lens capsules in air was studied for the first time. For capsules separated from human cataract lenses the average value of the hydropermeability coefficient at dehydration was 0.19±0.10 µm/s. The average characteristic time of cataract lens capsules dehydration was 77±10 s for the samples studied.


cataract; eye lens; capsule; capsulorhexis; transmission; laser; water; hydropermeability

Full Text:



1. B. P. Danysh, and M. K. Duncan, “The lens capsule,” Experimental Eye Research 88(2), 151–164 (2009). Crossref

2. K. Jeon, International review of cell and molecular biology, Volume 296, Academic Press (2012). ISBN: 9780123943071.

3. J. S. Friedenwald, “Permeability of the lens capsule: with special reference to the etiology of senile cataract,” Archives of Ophthalmology 3(2), 182–193 (1930). Crossref

4. J. S. Friedenwald, “The permeability of the lens capsule to water, dextrose and other sugars,” Transactions of the American Ophthalmological Society 28, 195–211 (1930).

5. I. G. Fels, “Permeability of the anterior bovine lens capsule,” Experimental Eye Research 10(1), 8–14 (1970). Crossref

6. L. Ozaki, “The barrier function of the posterior capsule,” American Intra-Ocular Implant Society Journal 10(2), 182–184 (1984) Crossref

7. R. F. Fisher, “The water permeability of basement membrane under increasing pressure: evidence for a new theory of permeability,” Proceedings of the Royal Society B: Biological Sciences 216(1205), 475–496 (1982). Crossref

8. K. Varadaraj, C. Kushmerick, G. J. Baldo, S. Bassnett, A. Shiels, and R. T. Mathias, “The Role of MIP in Lens Fiber Cell Membrane Transport,” Journal of Membrane Biology 170(3), 191–203 (1999). Crossref

9. K. Varadaraj, S. Kumari, A. Shiels, and R. T. Mathias, “Regulation of Aquaporin Water Permeability in the Lens,” Investigative Ophthalmology & Visual Science 46(4), 1393–1402 (2005). Crossref

10. K. Varadaraj, S. S. Kumari, and R. T. Mathias, “Functional Expression of Aquaporins in Embryonic, Postnatal, and Adult Mouse Lenses,” Developmental Dynamics 236(5), 1319–1328 (2007). Crossref

11. C. J. Lee, J. A. Vroom, H. A. Fishman, S. F. Bent, “Determination of human lens capsule permeability and its feasibility as a replacement for Bruch’s membrane,” Biomaterials 27(8), 1670–1678 (2006). Crossref

12. B. P. Danysh, T. P. Patel, K. J. Czymmek, D. A. Edwards, L. Wang, J. Pande, and M. K. Duncan, “Characterizing molecular diffusion in the lens capsule,” Matrix Biology 29(3), 228–236 (2010). Crossref

13. C. Kastner, M. Lubler, T. Reske, K. Sternberg, R. Guthoff, and K.-P. Schmitz, “Determination of human anterior lens capsule permeability for fluorescent model substances and after-cataract preventive drugs,” Biomedical Engineering / Biomedizinische Technik, 57(SI-1 Track-D), 561–563 (2012). Crossref

14. K. E. Donaldson, R. Braga-Mele, F. Cabot, R. Davidson, D. K. Dhaliwal, R. Hamilton, M. Jackson, L. Patterson, K. Stonecipher, and S. H. Yoo, “Femtosecond laser-assisted cataract surgery,” Journal of Cataract & Refractive Surgery 39(11), 1753–1763 (2013). Crossref

15. Z. Z. Nagy, “The role of femtolaser in cataract surgery,” European Ophthalmic Review 6(5), 286–289 (2012). Crossref

16. V. G. Kopayeva, S. U. Kopayev, A. A. Ginoyan, and V. U. Alborova, “Сlinical experience in laser cataract extraction,” Bulletin of the Russian Academy of Natural Sciences 1, 77–80 (2012) [In Russian].

17. S. N. Fyodorov, V. G. Kopaeva, Yu. V. Andreev, A. V. Erofeev, A. V. Belikov, E G. Bogdalova, A. V. Skripnik, and O. A. Frolova, “Laser Extraction of Cataract (Experimental studies),” Ophtalmosurgery 3, 3–10 (1998) [in Russian].

18. N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” Journal of Cataract & Refractive Surgery 37(7), 1189–1198 (2011). Crossref

19. A. V. Belikov, S. V. Gagarsky, A. B. Gubin, S. Ya. Weiner, A. N. Sergeev, and S. N. Smirnov, “Subjoule diode-pumped ytterbium-erbium glass laser with cavity dumping for cataract extraction,” Scientific and Technical Journal of Information Technologies, Mechanics and Optics 15(6), 1021–1029 (2015). Crossref

20. A. V. Belikov, S. V. Gagarsky, A. N. Sergeev, and S. N. Smirnov, “In vitro destruction of anterior human lens capsule by submicrosecond pulses of Yb,Er:Glass laser,” Proc. SPIE 10336, 103360B (2017). Crossref

21. B. S. Ross, C. A. Puliafito, “Erbium-YAG and Holmium-YAG Laser Ablation of the Lens,” Lasers in Surgery and Medicine 15(1), 74–82 (1994). Crossref

22. H. Ho, and E. Fischer, “Pilot Study on Erbium Laser Phacoemulsification,” Ophthalmology 107(6), 1053–1061 (2000). Crossref

23. F. Hausladen, H. Wurm, and K. Stock, “Basic studies on laser-assisted phacoemulsification using diodepumped Er:YAG laser,” Proc. SPIE 9693, 96931Y (2016). Crossref

24. K. F. Palmer, and D. Williams, “Optical properties of water in the near infrared,” Journal of the Optical Society of America 64(8), 1107–1110 (1974). Crossref

25. G. M. Hale, and M. R. Querry, “Optical Constants of Water in the 200-nm to 200-μm Wavelength Region,” Applied Optics 12(3), 555–563 (1973). Crossref

26. A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and Mannitol Diffusion in Human Dura Mater,” Biophysical Journal 85(5), 3310–3318 (2003). Crossref

27. D. K. Tuchina, R. Shi, A. N. Bashkatov, E. A. Genina, D. Zhu, Q. Luo, and V. V. Tuchin “Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin,” Journal of Biophotonics 8(4), 332–346 (2015). Crossref

28. D. K. Tuchina, A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Quantification of glucose and glycerol diffusion in myocardium,” Journal Innovative Optical Health Science 8(3), 1541006 (2015). Crossref

29. E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, I. Yu. Yanina, and V. V. Tuchin, “Optical clearing of biological tissues: Prospects of application in medical diagnostics and phototherapy [Review],” Journal of Biomedical Science & Engineering 1(1), 22–58 (2015). Crossref

30. D. K. Tuchina , V. D. Genin, A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical Clearing of Skin Tissue ex vivo with Polyethylene Glycol,” Optics and spectroscopy 120(1), 28–37 (2016). Crossref

31. A. N. Bashkatov, “Control of tissue optical properties by means of osmotically active immersion liquids,” PhD thesis, Saratov State University, Saratov, Russia (2002) [In Russian].

32. E. A. Genina, A. N. Bashkatov, A. A. Korobko, E. A. Zubkova, V. V. Tuchin, I. Yaroslavsky, and G. B. Altshuler, “Optical clearing of human skin: comparative study of permeability and dehydration of intact and photothermally perforated skin,” Journal of Biomedical Optics 13(2), 021102 (2008). Crossref

33. A. Kotyk and K. Janáček, Membrane Transport: An Interdisciplinary Approach, Springer US, Plenum Press, New York (1977). ISBN: 978-1-4684-3335-7.

© 2014-2020 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+