Reversible photobleaching of photoconvertible SAASoti-FP

Ilya D. Solovyev
Department of Chemistry, M.V. Lomonosov Moscow State University, Russian Federation
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation

Alexandra V. Gavshina
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation

Alexander P. Savitsky (Login required)
Department of Chemistry, M.V. Lomonosov Moscow State University, Russian Federation
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation


Paper #3260 received 16 Nov 2017; revised manuscript received 25 Dec 2017; accepted for publication 25 Dec 2017; published online 31 Dec 2017. [Saratov Fall Meeting 2017 Special Issue].

DOI: 10.18287/JBPE17.03.040303

Abstract

SAASoti is a green fluorescent protein suitable for use in super-resolution microscopy as it can be photoconverted to red fluorescence under 405 nm illumination. The green fluorescence of V127T SAASoti variant is reversibly photobleached under exposure to 470 nm light without photoconversion to the red form. The phenomenon can be explained by chromophore protonation that was confirmed by an increase in absorption at 400 nm (chromophore protonated form) and a decrease at 509 nm (anionic form). This light-induced photoswitching can be repeated with the same sample several times without loss of the initial fluorescence intensity. Subsequent sample exposures result in the same fluorescence recovery process. By changing the content of the H-form one can control photoswitching as only the protonated SAASoti may be converted to the red form. This property is extremely important for sub-diffraction microscopy.

Keywords

fluorescent proteins; photobleaching; reversible photoswitching

Full Text:

PDF

References


1. D. Shcherbakova, P. Sengupta, J. Lippincott-Schwartz, and V. V. Verkhusha, “Photocontrollable fluorescent proteins for superresolution imaging,” Annual Review Biophysics 43, 303-329 (2014). Crossref

2. G. Lapshin, A. Salih, P. Kolosov, M. Golovkina, Y. Zavorotnyi, T. Ivashina, L. Vinokurov, V. Bagratashvili, and A. Savitsky, “Fluorescence color diversity of great barrier reef corals,” Journal of Innovative Optical Health Sciences 8(4), 1550028 (2015). Crossref

3. S. Habuchi, P. Dedecker, J. Hotta, C. Flors, R. Ando, H. Mizuno, A. Miyawaki, and J. Hofkens, “Photo-induced protonation/ deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching,” Photochemical & Photobiological Sciences 5(6), 567-576 (2006). Crossref

4. V. Adam, M. Lelimousin, S. Boehme, G. Desfonds, K. Nienhaus, M. J. Field, J. Wiedenmann, S. McSweeney, G. U. Nienhaus, and D. Bourgeois, “Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations,” Proceedings of the National Academy of Sciences 105(47), 18343-18348 (2008). Crossref

5. T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa, T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C. Eggeling, M. C. Wahl, S. W. Hell, and S. Jakobs, “A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching,” Nature Biotechnology 29, 942-947 (2011). Crossref

6. D. Bourgeois, “Deciphering structural photophysics of fluorescent proteins by kinetic crystallography,” International Journal of Molecular Sciences 18(6), 1187 (2017). Crossref

7. J. Petersen, P. G. Wilmann, T. Beddoe, A. J. Oakley, R. J. Devenish, M. Prescott, and J. Rossjohn, “The 2.0-Å crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor,” Journal of Biological Chemistry 278(45), 44626–44631 (2003). Crossref

8. M. Andresen, M. C. Wahl, A. C. Stiel, F. Grater, L. V. Schafer, S. Trowitzsch, G. Weber, C. Eggeling, H. Grubmuller, S. W. Hell, and S. Jakobs, “Structure and mechanism of the reversible photoswitch of a fluorescent protein,” Proceedings of the National Academy of Sciences 102(37), 13070–13074 (2005). Crossref

9. M. Quillin, D. M. Anstrom, X. Shu, S. O'Leary, K. Kallio, D. M. Chudakov, and S. J. Remington, “Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 Å resolution,” Biochemistry 44(15), 5774–5787 (2005). Crossref

10. H. Mizuno, P. Dedecker, R. Ando, T. Fukano, J. Hofkens, and A. Miyawaki, “Higher resolution in localization microscopy by slower switching of a photochromic protein,” Photochemical & Photobiological Sciences 9(2), 239-248 (2010). Crossref

11. T. Roebroek, S. Duwé, W. Vandenberg, and P. Dedecker, “Reduced fluorescent protein switching fatigue by binding-induced emissive state stabilization,” International Journal of Molecular Sciences 18(9), 2015 (2017). Crossref

12. A. Rusanov, V. A. Mironov, A. S. Goryashenko, B. L. Grigorenko, A. V. Nemukhin, and A. P. Savitsky, “Conformational partitioning in pH-induced fluorescence of the kindling fluorescent protein (KFP),” The Journal of Physical Chemistry B, 115(29), 9195–9201 (2011). Crossref

13. S. Gayda, K. Nienhaus, and G. Nienhaus, “Mechanistic insights into reversible photoactivation in proteins of the GFP family,” Biophysical Journal 103(12), 2521–2531 (2012). Crossref

14. D. K. Tiwari, Y. Arai, M. Yamanaka, T. Matsuda, M. Agetsuma, M. Nakano, K. Fujita, and T. Nagai “A fast- and positively photoswitchable fluorescent protein for ultralow-laser-power RESOLFT nanoscopy,” Nature Methods. 12(6), 515-518 (2015). Crossref

15. H. Ai, and R. Campbell, “Teal fluorescent proteins: characterization of a reversibly photoswitchable variant,” Proceedings of SPIE 6868, 68680D (2008). Crossref

16. X. He, A. Bell, and P. Tonge, “Ground state isomerization of a model green fluorescent protein chromophore,” FEBS Letters 5491(1-3), 35-38 (2003). Crossref

17. V. Mironov, M. G. Khrenova, B. L. Grigorenko, A. P. Savitsky, and A. V. Nemukhin, “Thermal isomerization of the chromoprotein asFP595 and its kindling mutant A143G: QM/MM molecular dynamics simulations,” The Journal of Physical Chemistry B 117 (43), 13507–13514 (2013). Crossref

18. A. Stiel, S. Trowitzsch, G. Weber, M. Andresen, C. Eggeling, S.W. Hell, S. Jakobs, and M.C. Wahl, “1.8 Å bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants,” Biochemical Journal 402(1), 35–42 (2007). Crossref

19. V. Adam, B. Moeyaert, C. C. David, H. Mizuno, M. Lelimousin, P. Dedecker, R. Ando, A. Miyawaki, J. Michiels, Y. Engelborghs, J. Hofkens “Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications,” Chemistry & Biology 18(10), 1241–1251 (2011). Crossref






© 2014-2018 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+