Macro and micro spectroscopy parameters of cancerous and healthy gastrointestinal tissues

Tsanislava Genova (Login required)
Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Ekaterina Borisova
Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
Saratov State University, Russian Federation

Oksana Semyachkina-Glushkovskaya
Saratov State University, Russian Federation

Dmitry Gorin
Saratov State University, Russian Federation

Daniil Bratashov
Saratov State University, Russian Federation

Ivan Terziev
University Hospital “Tsaritsa Yoanna”-ISUL, Sofia, Bulgaria

Paper #3264 received 30 Nov 2017; revised manuscript received 17 Dec 2017; accepted for publication 18 Dec 2017; published online 31 Dec 2017. [Saratov Fall Meeting 2017 Special Issue].

DOI: 10.18287/JBPE17.03.040305


New more sensitive diagnostic modalities, for either analysis of biopsy tissue samples or on site, in vivo microscopy tissue examination, emerge to aid the detection and accurate diagnosis of gastrointestinal cancer. One of the most intensively investigated techniques is the fluorescence spectroscopy approach.

We present our investigation of the detailed macro and micro fluorescence characteristics of ex-vivo fresh and fixed tissue samples. The fluorescence spectra of unprocessed cancerous and healthy gastrointestinal (GIT) tissue, obtained with two approaches fluorescence and synchronous fluorescence spectroscopy were compared with microspectroscopy performed with laser scanning confocal fluorescence microscopy (LSCFM) system in Lambda-scan regime over fixed tissue samples.

The evaluated optical macro- and micro- spectroscopy characteristics are presented and disscused in order to improve the current understanding of the origin of autofluorescence contrast between healthy and cancerous tissues and its application for improvement of the existing diagnostic modalities.


Autofluorescence; gastrointestinal tissues; colon carcinoma; confocal fluorescent microscopy (CFM)

Full Text:



1. L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,” CA: A Cancer Journal for Clinicians 65(2), 87–108 (2015). Crossref

2. A. B. Benson III, “Epidemiology, Disease Progression, and Economic Burden of Colorectal Cancer,” Journal of Managed Care Pharmacy 13(6), S5-S18 (2007). Crossref

3. N. Chaudhary, V. Kumaran, V. Varma, S. Kapoor, N. Mehta, and S. Nundy, “Post-Resection Surveillance in GI Cancers,” The Indian Journal of Surgery 76(5), 382-391 (2014). Crossref

4. J. J. Telford, and R. A. Enns, “Endoscopic missed rates of upper gastrointestinal cancers: parallels with colonoscopy,” The American Journal of Gastroenterology 105, 1298–1300 (2010). Crossref

5. M. Song, and T. Ang, “Early detection of early gastric cancer using image-enhanced endoscopy: Current trends,” Gastrointestinal Intervention 3(1), 1-7 (2014). Crossref

6. M. Fujiya, and Y. Kohgo, “Image-enhanced endoscopy for the diagnosis of colon neoplasms,” Gastrointestinal Endoscopy 77(1), 111-118.e5 (2013). Crossref

7. A. Johansson, K. Kromer, R. Sroka, and H. Stepp, “Clinical optical diagnostics: Status and perspectives,” Medical Laser Application 23(4), 155174 (2008). Crossref

8. M. Hasan, and M. Wallace, “Image-enhanced endoscopy,” Clinical Update 16(4), 1-5 (2009). Crossref

9. V. Subramanian, and K. Ragunath, “Advanced Endoscopic Imaging: A Review of Commercially Available Technologies,” Clinical Gastroenterology and Hepatology 12(3), 368-376.e1 (2014). Crossref

10. D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” Journal of Biomedical Optics 13(2), 024019 (2008). Crossref

11. D. Pantalone, F. Andreoli, F. Fusi, V. Basile, G. Romano, G. Giustozzi, L. Rigacci, R. Alterini, and M. Monici, “Multispectral Imaging Autofluorescence Microscopy in Colonic and Gastric Cancer Metastatic Lymph Nodes,” Clinical Gastroenterology and Hepatology 5(2), 230–236 (2007). Crossref

12. D. Pantalone, M. Monici, G. Romano, F. Cialdai, R. Santi, F. Fusi, C. Comin, and P. Bechi, “Colonic and gastric cancer metastatic lymph nodes: applications of autofluorescence-based techniques,” Oncology Reviews 4(1), 15–23 (2010). Crossref

13. R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochemistry and Photobiology 53(6), 777–786 (1991). Crossref

14. G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, and P. Spinelli, “Natural fluorescence of normal and neoplastic human colon: a comprehensive "ex vivo" study,” Lasers in Surgery and Medicine 16(1), 48–60 (1995). Crossref

15. H. Zheng, A. Weiss, R. Cline, and C MacAulay, “Real-time endoscopic fluorescence imaging for early cancer detection in the gastrointestinal tract,” Bioimaging 6, 151–165 (1998). Crossref

16. B. H. Li, and S. S. Xie, “Autofluorescence excitation-emission matrices for diagnosis of colonic cancer,” World Journal of Gastroenterology 11(25), 3931-3934 (2005). Crossref

17. B. H. Li, S. S. Xie, and Z. Zhang, “Steady-State and Time-Resolved Fluorescence Spectra for Detection of Colonic Cancer,” Proceedings of SPIE 5967, 59670A (2006). Crossref

18. X. Shao, W. Zheng, and Z. Huang, “In vivo diagnosis of colonic precancer and cancer using near-infrared autofluorescence spectroscopy and biochemical modeling,” Journal of Biomedical Optics 16(6), 067005 (2011). Crossref

19. A. Croce, and G. Bottiroli, “Autofluorescence Spectroscopy and Imaging: A Tool for Biomedical Research and Diagnosis,” European Journal of Histochemistry 58(4), 2461 (2014). Crossref

20. Y. DeClerck, “Interactions between tumour cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer,” European Journal of Cancer 36(10), 1258-1268 (2000). Crossref

21. K. T. Moesta, B. Ebert, T. Handke, D. Nolte, C. Nowak, W. E. Haensch, R. K. Pandey, T. J. Dougherty, H. Rinneberg, and P. M. Schlag, “Protoporphyrin IX occurs naturally in colorectal cancers and their metastases,” Cancer Research 61(3), 991-999 (2001).

22. F. Broek, P. Fockens, and E. Dekker, “Review article: new developments in colonic imaging,” Alimentary Pharmacology & Therapeutics 26, 91-99 (2007). Crossref

23. H. Aihara, K. Sumiyama, S. Saito, H. Tajiri, and M. Ikegami, “Numerical analysis of the autofluorescence intensity of neoplastic and non-neoplastic colorectal lesions by using a novel videoendoscopy system,” Gastrointestinal Endoscopy 69, 726-733 (2009).

24. T. Genova, E. Borisova, N. Penkov, B. Vladimirov, A. Zhelyazkova, and L. Avramov, “Excitation–emission matrices and synchronous fluorescence spectroscopy for the diagnosis of gastrointestinal cancers,” Quantum Electronics 46(6), 510 (2016). Crossref

25. E. Borisova, L. Plamenova, M. Keremedchiev, B. Vladimirov, and L. Avramov, “Endogenous and exogenous fluorescence spectroscopy of gastrointestinal tumours – in vitro studies”, Journal of Optoelectronics and Advanced Materials 16(9), 1196-1205 (2014).

26. T. Genova, E. Borisova, Al. Zhelyazkova, N. Penkov, B. Vladimirov, I. Terziev, O. Semyachkina-Glushkovskaya, and L. Avramov, “Colorectal cancer stage evaluation using synchronous fluorescence spectroscopy technique,” Optical and Quantum Electronics 48(8), 1-10 (2016). Crossref

27. L. Avramov, E. Borisova, Ts. Genova, Al. Zhelyazkova, L. Angelova, M. Keremedchiev, N. Penkov, I. Terziev, B. Vladimirov, and O. Semyachkina-Glushkovskaya, “Synchronous autofluorescence spectroscopy of gastrointestinal tumours - tool for endogenous fluorophores evaluation,” Optoelectronics and Advanced Materials - Rapid Communications 9(9-10), 1234–1238 (2015).

28. T. Vo-Dinh, “Principle of Synchronous Luminescence (SL) technique for biomedical diagnostics,” Proceedings of SPIE 3911, 42-49 (2000). Crossref

29. S. Kakar, C. Shi, M. Berho, D. K. Driman, P. Fitzgibbons, W. L. Frankel, K. A. Hill, J. Jessup, A. M. Krasinskas, and M. K. Washington, “Protocol for the Examination of Specimens From Patients With Primary Carcinoma of the Colon and Rectumm,” College of American Pathologists (CAP) (2017).

30. M. S. Viegas, T. C. Martins, F. Seco, and A. do Carmo, “An improved and cost-effective methodology for the reduction of autofluorescence in direct immunofluorescence studies on formalin-fixed paraffin-embedded tissues,” European Journal of Histochemistry 51(1), 59-66 (2007).

31. J. Aisa, M. Lahoz, P. Serrano, M. C. Pérez-Castejón, C. Junquera, M. C. Martínez-Ciriano, N. Pes, and A. Vera-Gil, “Acetylcholinesterase positive and paraformaldehyde induced fluorescence positive innervation in the upper eyelid of the sheep (Ovis aries),” Histology and Histopathology 16, 487-496 (2001).

32. N. D. Kirkpatrick, M. A. Brewer, and U. Utzinger, “Endogenous optical biomarkers of ovarian cancer evaluated with multiphoton microscopy,” Cancer Epidemiology Biomarkers & Prevention 16(10), 2048-57 (2007). Crossref

33. M. W. Conklin, P. P. Provenzano, K. W. Eliceiri, R. Sullivan, and P. J. Keely, “Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast,” Cell Biochemistry and Biophysics 53(3), 145-157 (2009). Crossref

34. R. M. Williams, A. Flesken-Nikitin, L. H. Ellenson, D. C. Connolly, T. C. Hamilton, A. Y. Nikitin, and W. R. Zipfel, “Strategies for High-Resolution Imaging of Epithelial Ovarian Cancer by Laparoscopic Nonlinear Microscopy,” Translational Oncology 3(3), 181-194 (2010). Crossref

35. J. Vivian, and P. Callis, “Mechanisms of Tryptophan Fluorescence Shifts in Proteins,” Biophysical Journal 80(5), 2093–2109 (2001). Crossref

36. P. Callis, and B. Burgess, “Tryptophan fluorescence shifts in proteins from hybrid simulations: an electrostatic approach,” The Journal of Physical Chemistry B 101(46), 9429-9432 (1997). Crossref

37. G. Palmer, C. Zhu, T.M. Breslin, F. Xu, K.W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer,” IEEE Transactions on Biomedical Engineering 50(11), 1233-1242 (2003). Crossref

38. Y. Li, Separation of endogenous fluorophores in normal and cancer cells, PhD thesis, University of Iowa, 2009.

© 2014-2022 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+