Fluorescent diagnostics of benign breast diseases and breast cancer

Valeriya S. Maryakhina orcid (Login required)
Kumertau branch of Orenburg State University, Kumertau, Russia

Yulia S. Korneva
Smolensk State Medical University, Russia
Smolensk Regional Institute of Pathology, Russia

Igor V. Chekurov
Orenburg State Agriculture University, Russia

Oksana A. Shisterova
Smolensk Oncological Dispensary, Russia

Paper #3271 received 1 Dec 2017; revised manuscript received 19 Dec 2017; accepted for publication 20 Dec 2017; published online 31 Dec 2017. [Saratov Fall Meeting 2017 Special Issue].

DOI: 10.18287/JBPE17.03.040306


In the study the spectra of fluorescence excitation and autofluorescence of histological sections with different pathological processes in breast were measured. Additionally, element composition of the tissues was investigated by scanning electron microscopy. It has been shown that spectra of fluorescence excitation of benign breast diseases (fibroadenoma and fibrocystic breast disease) have low maximum at 232 nm and high maximum at 260 nm. Also, fluorescence spectra of histological samples change during tumor growth and have two maxima (335 and 420 nm). The registered spectra are result of emission of such fluorophores as fatty acids, tryptophan, NADH, vitamin B6, collagen and bilirubin. The obtained spectral data correlate well with data of element analysis. Selenium status of the tissues was investigated by scanning electronic microscope. High concentration if selenium was detected only in fibroadenoma. In breast cancer samples and fibrocystic breast disease low selenium content was detected. It may confirm higher risk for malignant transformation of fibrocystic breast disease than fibroadenoma. Our results may be helpful for cancer diagnostics and for prognosis prediction.


breast cancer; benign breast disease; fluorescence; optical biomedical diagnostics

Full Text:



1. C. E. DeSantis, J. Ma, S. A. Goding, L. A. Newman, and A. Jemal, “Breast cancer statistics, 2017, racial disparity in mortality by state,” CA: a Cancer Journal of Clinicians 67(6), 439-448 (2017). Crossref

2. S. Winters, C. Martin, D. Murphy, and N. K. Shokar, “Breast Cancer Epidemiology, Prevention, and Screening,” Progress in Molecular Biology and Translational Science 151, 1-32 (2017).

3. V. Marco, T. Muntal, F. García-Hernandez, J. Cortes, B. Gonzalez, and I. T. Rubio, “Changes in breast cancer reports after pathology second opinion,” The Breast Journal 20(3), 295-301 (2014). Crossref

4. C. Colin, M. Devouassooux-Shisheboran, and F. Sardanelli, “Is breast cancer overdiagnosis also nested in pathologic misclassification?” Radiology 273(3), 652-655 (2014). Crossref

5. L. F. Carvalho, F. Bonnier, K. O'Callaghan, J. O'Sullivan, S. Flint, H. J. Byrne, and F. M. Lyng, “Raman micro-spectroscopy for rapid screening of oral squamous cell carcinoma,” Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 119(3), e106-e107 (2015). Crossref

6. M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, R. R. Dasari, S. M. Shapshay, and M. S. Feld, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97(7), 1681-1692 (2003). Crossref

7. A. M. Badowska-Kozakiewicz, M. P. Budzik, and J. Przybylski, “Hypoxia in breast cancer,” Polish Journal of Pathology 66(4), 337-346 (2015). Crossref

8. O. I. Alatise, O. O. Babalola, G. O. Omoniyi-Esan, O. O. Lawal, A. R. Adesunkanmi, and E. A. Agbakwuru, “Selenium levels in neoplastic breast lesions,” The Nigerian Postgraduate Medical Journal 20(2), 91-97 (2013).

9. L. C. Hartmann, T. A. Sellers, M. H. Frost, W. L. Lingle, A. C. Degnim, K. Ghosh, R. A. Vierkant, S. D. Maloney, V. S. Pankratz, D. W. Hillman, V. J. Suman, J. Johnson, C. Blake, T. Tlsty, C. M. Vachon, L. J. Melton 3rd, and D. W. Visscher, “Benign breast disease and the risk of breast cancer,” The New England Journal of Medicine 353, 229-237 (2003). Crossref

10. Y. Choi, E. Hyun, J. Seo, C. Blundell, H. C. Kim, E. Lee, S. H. Lee, A. Moon, W. K. Moon, and D. Huh, “A microengineered pathophysiological model of early-stage breast cancer,” Lab on a Chip 15(16), 3350-3357 (2015). Crossref

11. T. Hasebe, “Tumor-stromal interactions in breast tumor progression – significance of histological heterogeneity of tumor-stromal fibroblasts,” Expert Opinion on Therapeutic Targets 17(4), 449-460 (2013). Crossref

12. J. T. Li, H. W. Zhang, X. H. Guo, X. F. Sun, Y. N. He, C. J. Liu, S. D. Cui, and H. Liu, “Effects of high glucose on in vitro invasiveness of human breast cancer cell line MDA-MB-435,” Zhonghua Yi Xue Za Zhi 93(2), 89-92 (2013) [in Chinese].

13. V. S. Maryakhina, The optical techniques in chemistry, biology and medicine, Science, Moscow (2015) [in Russian].

14. R. R. Anderson, and J. A. Parrish, “Optical Properties of Human Skin,” in The Science of Photomedicine. Photobiology, J. D. Regan, J. A. Parrish (Eds.), Springer, Boston, 147-194 (1982).

15. G. Deliconstantinos, V. Villiotou, J. C. Stavrides, N. Salemes, and J. Gogas, “Nitric oxide and peroxynitrite production by human erythrocytes: a causative factor of toxic anemia in breast cancer patients,” Anticancer Research 15(4), 1435-46 (1995).

16. F. Kebers, J. M. Lewalle, J. Desreux, C. Munaut, L. Devy, J. M. Foidart, and A. Noël, “Induction of endothelial cell apoptosis by solid tumor cells,” Experimental Cell Research 240 (2), 197-205 (1998). Crossref

17. H. Zeng, C. MacAulay, B. Palcic, and D. I. McLean, “Spectroscopic and microscopic characteristics of human skin autofluorescence emission,” Photochemistry and Photobiology 61(6), 639–645 (1995). Crossref

18. S. Udenfriend, B. Horecker, N. O. Kaplan, and J. Marmur, “Vitamins, coenzymes, and their metabolites,” in Fluorescence assay in biology and medicine, Academic Press Inc., 219-334 (1969).

19. G. Vinothini, C. Aravindraja, K. Chitrathara, and S. Nagini, “Correlation of matrix metalloproteinases and their inhibitors with hypoxia and angiogenesis in premenopausal patients with adenocarcinoma of the breast,” Clinical Biochemistry 44(12), 969-974 (2011). Crossref

20. C. Potera, D. P. Rose, and R. R. Brown, “Vitamin B6 deficiency in cancer patients,” The American Journal of Clinical Nutrition 30(10), 1677-1679 (1977). Crossref

21. G. Lurie, L. R. Wilkens, Y. B. Shvetsov, N. J. Ollberding, A. A. Franke, B. E. Henderson, L. N. Kolonel, and M. T. Goodman, “Prediagnostic plasma pyridoxal 5'-phosphate (vitamin b6) levels and invasive breast carcinoma risk: the multiethnic cohort,” Cancer Epidemiology, Biomarkers & Prevention 21(11), 1942-1948 (2012). Crossref

22. N. Babaknejad, F. Sayehmiri, K. Sayehmiri, P. Rahimifar, S. Bahrami, A. Delpesheh, F. Hemati, and S. Alizadeh, “The relationship between selenium levels and breast cancer: a systematic review and meta-analysis,” Biological Trace Element Research 159(1-3), 1-7 (2014). Crossref

23. J. X. de Miranda, F. O Andrade, A. Conti, M. L. Dagli, F. S. Moreno, and T. P. Ong, “Effects of selenium compounds on proliferation and epigenetic marks of breast cancer cells,” Journal of Trace Elements in Medicine and Biology 28(4), 486-91 (2014). Crossref

24. S. Winters, C. Martin, D. Murphy, and N. K. Shokar, “Breast Cancer Epidemiology, Prevention, and Screening,” Progress in Molecular Biology and Translational Science 151, 1-32 (2017).

25. S. Udenfriend, B. Horecker, N. O. Kaplan, and J. Marmur, “Vitamins, coenzymes, and their metabolites,” in Fluorescence assay in biology and medicine, Academic Press Inc., 219-334 (1969).

© 2014-2018 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+