Luminescent Chemosensor Systems for Detecting Metal Ions in Aqueous Media

Andrey A. Leonov (Login required)
Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia

Alexander A. Sergeev
Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia

Alexander Yu. Mironenko
Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia

Sergey S. Voznesenskiy
Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia


Paper #3277 received 15 Jan 2018; revised manuscript received 24 Feb 2018; accepted for publication 26 Feb 2018; published online 20 Mar 2018. [Special Section. Workshop “Biophotonics” of the XV all-Russian Youth Samara conference-contest on optics and laser physics].

DOI: 10.18287/JBPE18.04.010502

Abstract

The paper deals with the synthesis and study of chemosensor structures for detecting metal ions in aqueous solutions based on a hydrophilic polymer modified by an ion-sensitive indicator. A new ion-sensitive indicator based on the rhodamine 6G luminophore that selectively responds to the presence of nickel ions in aqueous environment is developed. The limit of the nickel ions detection is equal to 0.1 µM.

Keywords

biopolymer; chitosan; optical sensor; sensitive coatings; luminescence; analyte; polymers; metal ions

Full Text:

PDF

References


1. L. Prodi, F. Bolletta, M. Montalti, and N. Zaccheroni, “Luminescent chemosensors for transition metal ions,” Coordination Chemistry Reviews 205(1), 59-83 (2000). Crossref

2. Y. Xiao, Y. Cui, Q. Zheng, S. Xiang, G. Qian, and B. Chen, “A microporous luminescent metal-organic frame-work for highly selective and sensitive sensing of Cu2+ in aqueous solution,” Chemical Communications 46(30), 5503-5505 (2010). Crossref

3. L. Prodi, “Luminescent chemosensors: from molecules to nanoparticles,” New Journal of Chemistry 29(1), 456-461 (2005). Crossref

4. M. Formica, V. Fusi, L. Giorgi, and M. Micheloni, “New fluorescent chemosensors for metal ions in solution,” Coordination Chemistry Reviews 256(1-2), 170-192 (2012). Crossref

5. F. M. Raymo, and I. Yildiz, “Luminescent chemosensors based on semiconductor quantum dots,” Physical Chemistry Chemical Physics 9(17), 2036-2043 (2007). Crossref

6. K. Lunstroot, K. Driesen, P. Nockemann, C. Görller-Walrand, K. Binnemans, S. Bellayer, J. Le Bideau, and A. Vioux, “Luminescent Ionogels Based on Europium-Doped Ionic Liquids Confined within Silica-Derived Networks,” Chemistry of Materials 18(24), 5711-5715 (2006). Crossref

7. A. Prasanna de Silva, T. S. Moodyb, and G. D. Wright, “Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools,” Analyst 134(12), 2385-2393 (2009). Crossref

8. R. M. Clegg, “Fluorescence resonance energy transfer and nucleic acids,” Methods in Enzymology 211, 353-388 (1992). Crossref

9. Y. Jeong, and J. Yoon, “Recent progress on fluorescent chemosensors for metal ions,” Inorganica Chimica Acta 381(23), 2-14 (2012). Crossref

10. S. Bonacchi, D. Genovese, R. Juris, M. Montalti, L. Prodi, E. Rampazzo, M. Sgarzi, and N. Zaccheroni, “Luminescent Chemosensors Based on Silica Nanoparticles,” in Topics in Current Chemistry, vol. 300, L. Prodi, M. Montalti, N. Zaccheroni (Eds), Springer, Berlin, Heidelberg, 93-138 (2010). Crossref

11. N. R. Chereddy, K. Suman, P. S. Korrapati, S. Thennarasu, and A. B. Mandal, “Design and synthesis of rhodamine based chemosensors for the detection of Fe3+ ions,” Dyes and Pigments 95(3), 606-613 (2012). Crossref

12. J. Y. Kwon, Y. J. Jang, Y. J. Lee, K. M. Kim, M. S. Seo, W. Nam, and J. Yoonet, “A Highly Selective Fluorescent Chemosensor for Pb2+,” American Chemical Society 127(28), 10107-10111 (2005). Crossref

13. Y. Zhou, J. Zhang, L. Zhang, Q. Zhang, T. Ma, and J. Niu, “A rhodamine-based fluorescent enhancement chemosensor for the detection of Cr3+ in aqueous media,” Dyes and Pigments 97(1), 148-154 (2013). Crossref

14. Y. K. Jang, U. C. Nam, H. L. Kwon, I. H. Hwang, and C. Kim, “A selective colorimetric and fluorescent chemosensor based-on naphthol for detection of Al3+ and Cu2+,” Dyes and Pigments 99(1), 6-13 (2013). Crossref

15. Z.-C. Liao, Z.-Y. Yang, Y. Li, B.-D. Wang, and Q.-X. Zhou “A simple structure fluorescent chemosensor for high selectivity and sensitivity of aluminum ions,” Dyes and Pigments 97(1), 124-128 (2013). Crossref

16. M. R. Ganjali, M. Hosseini, M. Motalebi, M. Sedaghat, F. Mizani, F. Faridbod, and P. Norouzi, “Selective recognition of Ni2+ ion based on fluorescence enhancement chemosensor,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 140, 283-287 (2015). Crossref

17. A. Yari, M. B. Gholivand, and F. Rahhedayat, “Development and characterization of a new nickel(II) ion selective optode based on 2-amino-1-cyclopentenedithiocarboxylic acid,” Measurement 44(9), 1691-1698 (2011). Crossref

18. N. Aksuner, E. Henden, I. Yilmaz, and A. Cukurovali, “A novel optical chemical sensor for the determination of nickel(II) based on fluorescence quenching of newly synthesized thiazolo-triazol derivative and application to real samples,” Sensors and Actuators B: Chemical 166-167, 269-274 (2012). Crossref

19. H. Li, S.-J. Zhang, C.-L. Gong, Y.-F. Li, Y. Liang, Z.-G. Qi, and S. Chen, “Highly sensitive and selective fluorescent chemosensor for Ni2+ based on a new poly(arylene ether) with terpyridine substituent groups,” The Analyst 138(23), 7090-7093 (2013). Crossref






© 2014-2018 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+