Blood refractive index modelling in the visible and near infrared spectral regions

Ekaterina N. Lazareva (Login required)
Research Educational Institute of Optics and Biophotonics, Saratov State University (National Research University), Russia
Center for Functionalized Magnetic Materials (FunMagMa), Immanuel Kant Baltic Federal University, Kaliningrad, Russia
Interdisciplinary Laboratory of Biophotonics, Tomsk State University (National Research University), Russia

Valery V. Tuchin
Research Educational Institute of Optics and Biophotonics, Saratov State University (National Research University), Russia
Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, Russian Academy of Sciences, Saratov, Russia
Samara National Research University, Russia


Paper #3278 received 15 Jan 2018; revised manuscript received 14 Mar 2018; accepted for publication 16 Mar 2018; published online 26 Mar 2018. [Special Section. Workshop “Biophotonics” of the XV all-Russian Youth Samara conference-contest on optics and laser physics].

DOI: 10.18287/JBPE18.04.010503

Abstract

We present the calculation of blood refractive index based on the experi-mental data for the real part of the refractive index of the main protein components, haemoglobin and albumin. The refractive index of blood proteins was measured using the multi-wavelength Abbe refractometer at the wavelengths 480, 486, 546, 589, 644, 656, 680, 930, 1100, 1300, and 1550 nm at room temperature +24°С.

Keywords

refractive index; blood; blood components; blood dispersion; visible/NIR wavelengths; Sellmeier formula

Full Text:

PDF

References


1. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd Edition, SPIE Press, Bellingham, WA (2015).

2. J. Heijmans, L. Cheng, and F. Wieringa, “Optical fiber sensors for medical applications – Practical engineering considerations,” IFMBE Proceedings 22, 2330-2334 (2009). Crossref

3. V. V. Tuchin (Ed.), Handbook of Optical Biomedical Diagnostics. Light-Tissue Interaction, vol. 1, 2nd Edition, SPIE Press, Bellingham, WA (2016).

4. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the near infrared spectral range,” Proceedings of SPIE 2678, 314-324 (1996). Crossref

5. S. L. Jacques, “Corrigendum: Optical properties of biological tissues: a review,” Physics in Medicine and Biology 58(13), 5007-5008 (2013). Crossref

6. N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers in Medical Science 29(2), 453–479 (2014). Crossref

7. J. Wang, Zh. Deng, X. Wang, Q. Ye, W. Zhou, J. Mei, Ch. Zhang, and J. Tian, “Measurement of the refractive index of hemoglobin solutions for a continuous spectral region,” Biomedical Optics Express 6(7), 2536–2541 (2015). Crossref

8. O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Physics in Medicine and Biology 56(13), 4013–4021 (2011). Crossref

9. M. Yahya, and M. Z. Saghir, “Empirical modelling to predict the refractive index of human blood,” Physics in Medicine and Biology 61(4), 1405–1415 (2016). Crossref

10. J. D. Rowe, D. Smith, and J. S. Wilkinson, “Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared,” Scientific Reports 7, 7356 (2017). Crossref

11. Y. L. Jin, J. Y. Chen, L. Xu, and P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Physics in Medicine and Biology 51(20), 371–379 (2006). Crossref

12. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Physical Review Letters 93, 028102 (2004). Crossref

13. M. Jedrzejewska-Szczerska, “Measurement of complex refractive index of human blood by low-coherence interferometry,” The European Physical Journal Special Topics 222(9), 2367–2372 (2013) Crossref

14. Zh. Wang, K.Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” Journal of Biomedical Optics 16(11), 116017 (2011). Crossref

15. H. Majeed, Sh. Sridharan, M. Mir, L. Ma, E. Min, W. Jung, and G. Popescu, “Quantitative phase imaging for medical diagnosis,” Journal of Biophotonics 10(2), 177–205 (2017). Crossref

16. G. Mazarevica, T. Freivalds, and A. Jurka, “Properties of erythrocyte light refraction in diabetic patients,” Journal of Biomedical Optics 7(2), 244-247 (2002). Crossref

17. L. V. Plotnikova, A. M. Polyanichko, M. O. Kobeleva, A. A. Nikekhin, M. V. Uspenskaya, A. V. Kayava, A. D. Garifullin, and S. W. Voloshin, “Analysis of blood serum by the method of refractometry in antitumor therapy in patients with multiple myeloma,” Optics and Spectroscopy 124(1), 140-142 (2018). Crossref

18. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” Journal of Innovative Optical Health Sciences 4(1), 9-38 (2011). Crossref

19. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Applied Optics 28(12), 2297-2303 (1989). Crossref

20. D. K. Sardar, and L. B. Levy, “Optical properties of whole blood,” Lasers in Medical Science 13(2), 106-111 (1998). Crossref

21. H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” Proceedings of SPIE 3914, 517-521 (2000). Crossref

22. S. Cheng, H. Y. Shen, G. Zhang, C. H. Huang, and X. J. Huang, “Measurement of the refractive index of biotissue at four laser wavelengths,” Proceedings of SPIE 4916, 172–176 (2002). Crossref

23. R. Barer, “Refractometry and interferometry of living cells,” Journal of the Optical Society of America 47(6), 545–556 (1957). Crossref

24. M. V. Volkenshtein, Molecular Optics, Gosteskhizdat, Moscow (1951) [in Russian].

25. D. Segelstein, “The complex refractive index of water,” M.S. thesis, Department Of Physics, University of Missouri, Kansas City (1981).

26. N. G. Khlebtsov, I. L. Maksimova, I. V. Meglinski, L. Wang, and V. V. Tuchin, “Introduction to light scattering by biological objects,” Chapter 1 in Handbook of Optical Biomedical Diagnostics. Light-Tissue Interaction, 2nd Edition, SPIE Press, Bellingham, WA (2016).

27. W. Heller, “Remarks on refractive index mixture rules,” The Journal of Physical Chemistry 69(4), 1123–1129 (1966). Crossref

28. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Optics Letters 20(21), 2258-2260 (1995). Crossref

29. H.-C. Cheng, and Y.-C. Liu, “Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography,” Applied Optics 49, 790-797 (2010). Crossref

30. I. Yu. Yanina, N. A. Trunina, and V. V. Tuchin, “Photoinduced cell morphology alterations quantified within adipose tissues by spectral optical coherence tomography,” Journal of Biomedical Optics 18(11), 111407 (2013). Crossref

31. J. H. Jung, K. Kim, J. Yoon, and Y. K. Park, “Hyperspectral optical diffraction tomography,” Optics Express 24(3), 2006-2012 (2016). Crossref

32. Y. K. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Optics Letters 34(23), 3668-3670 (2009). Crossref

33. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nature Photonics 5(12), 744-747 (2011). Crossref

34. F. E. Robles, L. L. Satterwhite, and A. Wax, “Non-linear phase dispersion spectroscopy,” Optics Letters 36(23), 4665-4667 (2011). Crossref

35. J. Singh, Optical Properties of Condensed Matter and Applications, Wiley, Chichester, (2006).

36. J. A. Lamasso, “Error in hematocrit value produced by excessive ethylenediaminetetraacetate,” American Journal of Clinical Pathology 44, 109-110 (1965).






© 2014-2018 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+