Statistical studies on optical vortices in dynamic speckle fields

Anindya Majumdar
Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA

Sean J. Kirkpatrick (Login required)
Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA

Paper #3283 received 7 Mar 2018; revised manuscript received 16 May 2018; accepted for publication 17 May 2018; published online 27 May 2018.

DOI: 10.18287/JBPE18.04.020301


New parameters to statistically describe and differentiate between different decorrelation behaviors in dynamic speckle fields are described. These decorrelation behaviors are surrogate descriptors of the dynamics of the underlying processes in object space being observed.  The statistical parameters are based on the temporal variations in the location of optical vortices in the speckle fields. The length and number of optical vortex trails, motion of the vortices in the plane of observation and the distance between the mean locations of the positive and negative vortices are investigated. The implementation of the statistical analysis presents new methods to quantify and describe biophysical dynamics.


laser speckle; optical vortices; singular optics; light scattering; dynamics

Full Text:



1. A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Optics Communications 37(5), 326-330 (1981). Crossref

2. S. E. Murialdo, G. H. Sendra, L. I. Passoni, R. Arizaga, and J. F. Gonzalez, “Analysis of bacterial chemotactic response using dynamic laser speckle,” Journal of Biomedical Optics 14(6), 064015 (2009). Crossref

3. H. Sendra, S. Murialdo, and L. Passoni, “Dynamic laser speckle to detect motile bacterial response of Pseudomonas aeruginosa,” Journal of Physics: Conference Series 90, 012064 (2007). Crossref

4. A. Oulamara, A. Tribillon, and G. Doverney, “Biological activity measurements on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” Journal of Modern Optics 36(2), 165-179 (1989). Crossref

5. J. D. Briers, S. Webster, “Laser Speckle Contrast Analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” Journal of Biomedical Optics 1(2), 174-179 (1996). Crossref

6. D. A. Boas, A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” Journal of Biomedical Optics 15(1), 011109 (2010). Crossref

7. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” Journal of Cerebral Blood Flow and Metabolism 21(3), 195-201 (2001). Crossref

8. J. F. Nye, M. V. Berry, “Dislocations in Wave Trains,” Proceedings of Royal Society of London A 336(1605), 165-190 (1974). Crossref

9. M. Berry, J. Nye, and F. Wright, “The elliptic umbilic diffraction catastrophe,” Philosophical Transactions of the Royal Society 291(1382), 453-484 (1979). Crossref

10. N. B. Baranova, B. Ya. Zel’dovich, “Dislocations of the wave-front surface and zeros of the amplitude,” Journal of Experimental and Theoretical Physics 53(5), 925-929 (1981).

11. S. J. Kirkpatrick, K. Khaksari, D. Thomas, and D. D. Duncan, “Optical vortex behavior in dynamic speckle fields,” Journal of Biomedical Optics 17(5), 050504 (2012). Crossref

12. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Physical Review A 56(5), 4064-4075 (1997). Crossref

13. K. O’Holleran, M. Padgett, and M. Dennis, “Topology of optical vortex lines formed by the interference of three, four and five plane waves,” Optics Express 14(7), 3039-3044 (2006). Crossref

14. M. Brambilla, M. Cattaneo, L. A. Lugiato, V. Penna, F. Prati, C. Tamm, and C. O. Weiss, “Transverse laser patterns. I. Phase singularity crystals,” Physical Review A 43, 5090-5113 (1991). Crossref

15. J. M. Vaushan, D. Willetts, “Interference properties of a light-beam having a helical wave surface,” Optics Communications 30(3), 263-267 (1979). Crossref

16. V. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser-beams with screw dislocations in their wave-fronts,” Journal of Experimental and Theoretical Physics Letters 52, 429-431 (1990).

17. M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular-momentum,” Optics Communications 96(1-3), 123-132 (1993). Crossref

18. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Optics Communications 207, 169-175 (2002). Crossref

19. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes,” Physical Review A 45(11), 8185-8189 (1992). Crossref

20. H. He, M. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Physical Review Letters 75(5), 826-829 (1995). Crossref

21. N. Simpson, K. Dholakia, L. Allen, and M. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Optics Letters 22(1), 52-54 (1997). Crossref

22. D. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810-816 (2003). Crossref

23. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Physical Review Letters 88(5), 053601 (2002). Crossref

24. B. A. Knyazev, Y. Y. Choporova, V. S. Pavelyev, N. D. Osintseva, and B. O. Volodkin, “Transmission of high-power terahertz beams with orbital angular momentum through atmosphere,” International conference on Infrared, Millimeter, and Terahertz Waves, 7758816 (2016). Crossref

25. G. S. Agarwal and J. Banerji, “Spatial coherence and information entropy in optical vortex fields,” Optics Letters 27(10), 800-802 (2002). Crossref

26. A. Kumar, S. Prabhakar, P. Vaity, and R. P. Singh, “Information content of optical vortex fields,” Optics Letters 36(7), 1161-1163 (2011). Crossref

27. D. Rozas, C. T. Law, and G. A. Swartzlander, Jr., “Propagation dynamics of optical vortices,” Journal of Optical Society of America B 14(11), 3054-3065 (1997). Crossref

28. D. D. Duncan, S. J. Kirkpatrick, “The copula: a tool for simulating speckle dynamics,” Journal of Optical Society of America A 25(1), 231-237 (2008). Crossref

29. D. D. Duncan, S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” Journal of Optical Society of America A 25(8), 2088-2094 (2008). Crossref

30. M. A. Woo, W. G. Stevenson, D. K. Moser, R. B. Trelease, and R. H. Harper, “Patterns of beat-to-beat heart rate variability in advanced heart failure,” American Heart Journal 123(3), 704-710 (1992). Crossref

31. M. Brennan, M. Palaniswami, and P. Kamen, “Do Existing Measures of Poincaré Plot Geometry Reflect Nonlinear Features of Heart Rate Variability?” IEEE Transactions on Biomedical Engineering 48(11), 1342-1347 (2001). Crossref

32. J. W. Goodman, Speckle Phenomena in Optics Theory and Applications, Roberts & Co., Englewood, CO, USA (2007).

33. M. E. Thomas, D. D. Duncan, “Atmospheric transmission,” Chapter in Infrared & Electro-Optical Systems Handbook, Vol. 2, Atmospheric Propagation of Radiation, SPIE Press, Bellingham, WA (1993).

© 2014-2018 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+