Mathematical model of skin autofluorescence induced by 450 nm laser

Dmitry N. Artemyev orcid (Login required)
Samara National Research University, Russia


Paper #3293 received 6 May 2018; revised manuscript received 10 Jun 2018; accepted for publication 16 Jun 2018; published online 30 Jun 2018.

DOI: 10.18287/JBPE18.04.020303

Abstract

Optical methods are increasingly being used for the early diagnosis of skin cancer. This approach allows for detecting the component composition changes of tissue in a non-invasive manner. Autofluorescence spectroscopy is a sensitive method for tumor diagnosis and the method availability distinguishes it among other approaches. This work is devoted to fluorescence modeling of skin tissues induced by 450 nm radiation. A multilayer skin model was developed using a set of fluorophores (eumelanin, lipofuscin, riboflavin, beta-carotene, bilirubin) matched with excitation radiation. Model autofluorescence spectra of normal skin tissues of the northern phenotype and pathological changes were obtained. The results were compared with the results of previous experimental studies of ex vivo autofluorescence spectra of the skin and neoplasms.

Keywords

Autofluorescence; Monte Carlo Modeling; Skin Model; Skin Fluorophores; Optical Diagnostics

Full Text:

PDF

References


1. A. D. Kaprin, V. V. Starinsky, and G. V. Petrova, “Malignant Tumors in Russia 2015 (Morbidity and Mortality),” Russia Ministry of health, Moscow (2017) [in Russian]. ISBN 978-5-85502-227-8.

2. V. P. Zakharov, I. A. Bratchenko, D. N. Artemyev, O. O. Myakinin, D. V. Kornilin, S. V. Kozlov, and A. A. Moryatov, “Comparative analysis of combined spectral and optical tomography methods for detection of skin and lung cancers,” Journal of Biomedical Optics 20(2), 025003 (2015). Crossref

3. I. A. Bratchenko, D. N. Artemyev, O. O. Myakinin, Y. A. Khristoforova, A. A. Moryatov, S. V. Kozlov, and V. P. Zakharov, “Combined Raman and autofluorescence ex vivo diagnostics of skin cancer in near-infrared and visible regions,” Journal of Biomedical Optics 22(2), 027005 (2017). Crossref

4. H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Research 72(10), 2491-2500 (2012). Crossref

5. E. Borisova, L. Avramov, P. Pavlova, E. Pavlova, and P. Troyanova, “Qualitative optical evaluation of malignancies related to cutaneous phototype,” Proceedings of SPIE 7563, 75630X (2010). Crossref

6. I. A. Bratchenko, D. N. Artemyev, O. O. Myakinin, M. G. Vrakova, K. S. Shpuntenko, A. A. Moryatov, S. V. Kozlov, and V. P. Zakharov, “Malignant melanoma and basal cell carcinoma detection with 457 nm laser-induced fluorescence,” Journal of Biomedical Photonics & Engineering 1(3), 180–185 (2015). Crossref

7. V. V. Tuchin, Tissue Optics, Light Scattering Methods and Instruments for Medical Diagnostics, Third Edition, SPIE, Bellingham (2007). ISBN: 9781628415162.

8. I. V. Meglinski, A. V. Doronin, “Monte Carlo Modeling of Photon Migration for the Needs of Biomedical Optics and Biophotonics,” Chap. 1 in Advanced Biophotonics: tissue optical sectioning, 1–72 (2013). Crossref

9. A. Yu. Setejkin, I. V. Krasnikov, Application of the Monte Carlo method for biophotonics problems, AmGU publisher, Blagoveshchensk (2014) [in Russian]. ISBN 978-5-93493-224-5.

10. C. Zhu, Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” Journal of Biomedical Optics 18(5), 050902 (2013). Crossref

11. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers in Surgery and Medicine 21(2), 166-78 (1997). Crossref

12. F. Jaillon, W. Zheng, and Z. Huang, “Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations,” Physics in Medicine and Biology 53(4), 937–951 (2008). Crossref

13. K. B. Sung, H. H. Chen, “Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study,” Journal of Biomedical Optics 17(10), 107003 (2012). Crossref

14. Y. P. Sinichkin, S. R. Utz, A. H. Mavliutov, and H. A. Pilipenko “In Vivo Fluorescence Spectroscopy of the Human Skin: Experiments and Models,” Journal of Biomedical Optics 3(2), 201-211 (1998). Crossref

15. H. Zeng, C. MacAulay, D. I. McLean, and B. Palcic, “Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation,” Journal of Photochemistry and Photobiology B: Biology 38(2–3), 234–240 (1997). Crossref

16. Q. Liu, C. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” Journal of Biomedical Optics 8(2), 223-236 (2003). Crossref

17. V. V. Dryemin, Method and device for diagnosis of tissue metabolism disorders based on optical spectroscopy (for example, diabetes mellitus), Diss. Cand. Sci. in Tech., Oryol State University, Oryol, Russia, 2017 [in Russian].

18. I. V. Meglinski, S. J. Matcher, “Computer simulation of the skin reflectance spectra,” Computer Methods and Programs in Biomedicine 70(2), 179-186 (2003). Crossref

19. S. L. Jacques, “Optical properties of biological tissues: a review,” Physics in Medicine and Biology 58(11), R37–R61 (2013). Crossref

20. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” Journal of Innovative Optical Health Sciences 4(1), 9–38 (2011). Crossref

21. E. G. Borisova, L. P. Angelova, and E. P. Pavlova, “Endogenous and Exogenous Fluorescence Skin Cancer Diagnostics for Clinical Applications,” IEEE Journal of Selected Topics in Quantum Electronics 20(2), 211–222 (2014). Crossref

22. K. Koenig, I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” Journal of Biomedical Optics 8(3), 432 (2003). Crossref

23. A. C. Croce, G. Bottiroli, “Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis,” European Journal of Histochemistry 58(4), (2014). Crossref

24. S. P. Nighswander-Rempel, J. Riesz, J. Gilmore, J. P. Bothma, and P. Meredith, “Quantitative Fluorescence Excitation Spectra of Synthetic Eumelanin,” Journal of Physical Chemistry B 109(43), 20629-20635 (2005). Crossref

25. M. E. Darvin, I. Gersonde, M. Meinke, W. Sterry, and J. Lademann, “Non-invasive in vivo determination of the carotenoids beta-carotene and lycopene concentrations in the human skin using the Raman spectroscopic method,” Journal of Physics D: Applied Physics 38(15), 2696–2700 (2005). Crossref

26. V. D. Silva, J. N. Conceição, I. P. Oliveira, C. H. Lescano, R. M. Muzzi, O. P. S. Filho, E. C. Conceição, G. A. Casagrande, and A. R. L. Caires, “Corrigendum to ‘Oxidative Stability of Baru (Dipteryx alataVogel) Oil Monitored by Fluorescence and Absorption Spectroscopy,” Journal of Spectroscopy 2015, 748673 (2015). Crossref

27. B. Thorell, “Flow-cytometric monitoring of intracellular flavins simultaneously with NAD(P)H levels,” Cytometry 4(1), 61–65 (1983). Crossref

28. D. M. Gore, P. French, D. O’Brart, C. Dunsby, and B. D. Allan, “Two-Photon Fluorescence Microscopy of Corneal Riboflavin Absorption Through an Intact Epithelium,” Investigative Ophthalmology & Visual Science 56(2), 1191–1192 (2015). Crossref

29. B. Zietz, A. N. Macpherson, and T. Gillbro, “Resolution of ultrafast excited state kinetics of bilirubin in chloroform and bound to human serum albumin,” Physical Chemistry Chemical Physics 6(19), 4535 (2004). Crossref

30. N. Nandakumar, S. Buzney, and J. J. Weiter, “Lipofuscin and the Principles of Fundus Autofluorescence: A Review,” Seminars in Ophthalmology 27(5–6), 197–201 (2012). Crossref

31. N. M. Haralampus-Grynaviski, L. E. Lamb, C. M. R. Clancy, C. Skumatz, J. M. Burke, T. Sarna, and J. D. Simon, “Spectroscopic and morphological studies of human retinal lipofuscin granules,” Proceedings of the National Academy of Sciences 100(6), 3179–3184 (2003). Crossref

32. A. Periasamy, and R. M. Clegg, Flim Microscopy in Biology and Medicine, CRC Press, Taylor & Francis Group, Boca Raton (2009). ISBN 9781420078909. Crossref

33. G. F. M. Ball, “Flavins: Riboflavin, FMN and FAD (Vitamin B2),” Chap. 12 in Vitamins: Their Role in the Human Body, 289–300 (2008). Crossref

34. R. L. Barnhill, M. Piepkorn, and K. J. Busam, Pathology of Melanocytic Nevi and Malignant Melanoma, Springer, Berlin (2004). ISBN 978-0-387-21619-5.

35. A. A. Efimov, G. N. Maslyakova, “Lipofuscin role in involutive and pathological processes,” Saratov Journal of Medical Scientific Research 5(1), 111-115 (2009) [in Russian].

36. A. Skoczyńska, E. Budzisz, E. Trznadel-Grodzka, and H. Rotsztejn, “Melanin and lipofuscin as hallmarks of skin aging,” Advances in Dermatology and Allergology 2, 97–103 (2017). Crossref

37. P. A. van den Berg, J. Widengren, M. A. Hink, R. Rigler, and A. J. W. Visser, “Fluorescence correlation spectroscopy of flavins and flavoenzymes: photochemical and photophysical aspects,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 57(11), 2135–2144 (2001). Crossref

38. A. Dontsov, A. Koromyslova, M. Ostrovsky, and N. Sakina, “Lipofuscins prepared by modification of photoreceptor cells via glycation or lipid peroxidation show the similar phototoxicity,” World Journal of Experimental Medicine 6(4), 63 (2016). Crossref

39. A. Hennessy, C. Oh, B. Diffey, K. Wakamatsu, S. Ito, and J. Rees, “Eumelanin and pheomelanin concentrations in human epidermis before and after UVB irradiation,” Pigment Cell Research 18(3), 220–223 (2005). Crossref

40. D. L. Fox, Biochromy, Natural Coloration of Living Things, University of California Press, Berkley and Los Angeles (1979). ISBN 0-52003699-9.

41. A. Vahlquist, J. B. Lee, G. Michaëlsson, and O. Rollman, “Vitamin A in Human Skin: II Concentrations of Carotene, Retinol and Dehydroretinol in Various Components of Normal Skin,” Journal of Investigative Dermatology 79(2), 94–97 (1982). Crossref

42. A. Knudsen, R. Brodersen, “Skin colour and bilirubin in neonates,” Archives of Disease in Childhood 64(4), 605–609 (1989). Crossref

43. I. A. Novikov, Y. O. Grusha, and N. P. Kiryshchenkova, “Autofluorescence diagnostics of skin and mucosal tumors,” Annals of ophthalmology 129(5), 147-153 (2013).

44. K. S. Litvinova, D. A. Rogatkin, O. A. Bychenkov, and V. I. Shumskiy, “Chronic Hypoxia as a Factor of Enhanced Autofluorescence of Endogenous Porphyrins in Soft Biological Tissues,” Proceedings of SPIE 7547, 75470D (2010). Crossref

45. M.-A. Mycek, B. W. Pogue, Handbook of biomedical fluorescence, Marcel Dekker Inc., New York (2003). ISBN: 0824709551

46. K. Konig, H. Meyer, and H. Schneckenburger, “The Study of Endogenous Porphyrins in Human Skin and Their Potential for Photodynamic Therapy by Laser Induced Fluorescence Spectroscopy,” Lasers in Medical Science 8, 127-132 (1993). Crossref

47. E. Borisova, P. Pavlova, E. Pavlova, P. Troyanova, and L. Avramov, “Optical Biopsy of Human Skin – A Tool for Cutaneous Tumours’ Diagnosis,” International Journal Bioautomation 16(1), 53-72 (2012).






© 2014-2018 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+