Interaction of erythrocytes in the process of pair aggregation in blood samples from patients with arterial hypertension and healthy donors: measurements with laser tweezers

Petr B. Ermolinskiy (Login required)
Department of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Andrei E. Lugovtsov
Department of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia

Anastasiya I. Maslyanitsina
Department of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Alexey N. Semenov
Department of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia

Larisa I. Dyachuk
Medical Research and Education Center of M.V. Lomonosov Moscow State University, Moscow, Russia

Alexander V. Priezzhev
Department of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia

Paper #3298 received 31 Aug 2018; revised manuscript received 16 Sep 2018; accepted for publication 19 Sep 2018; published online 30 Sep 2018.

DOI: 10.18287/JBPE18.04.030303


Two-channel laser tweezers are used to measure the interaction kinetics of two erythrocytes at the initial stage of aggregation, i.e., the formation of a pair aggregate in vitro. The study of erythrocytes interaction is important both for understanding the fundamental aggregation mechanisms and for evaluating the differences in kinetics and dynamics of aggregation, depending on the presence or absence of diseases that disturb the blood flow parameters and, therefore, the oxygen supply to tissues. We analyse the kinetics and dynamics of pair aggregation of erythrocytes in blood samples from more than 60 patients with arterial hypertension, as well as from a group of healthy donors. The results show that both kinetics and dynamics of erythrocyte aggregation are changed in the presence of the considered pathology.


aggregation; arterial hypertension; optical trap; manipulation of single cells; aggregation force; erythrocytes

Full Text:



1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Optics Letters 11(5), 288-290 (1986). Crossref

2. A. Ashkin, J. Dziedzic, “Optical trapping and manipulation of single living cells using infra-red laser beams,” Berichte der Bunsen-Gesellschaft für Physikalische Chemie 98, 254-260 (1989). Crossref

3. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers: a reprint volume with commentaries, World Scientific Publishing Co. Pte. Ltd., Singapore (2006). Crossref

4. K. Lee, A. V. Danilina, M. Kinnunen, A. V. Priezzhev, and I. Meglinski, “Probing the red blood cells aggregating force with optical tweezers,” IEEE Journal on Selected Topics in Quantum Electronics 22(3), 7000106 (2016). Crossref

5. D. S. Moura, D. C. N. Silva, A. J. Williams, M. A. C. Bezerra, A. Fontes, and R. E. de Araujo, “Automatic real time evaluation of red blood cell elasticity by optical tweezers,” Review of Scientific Instruments 86(5), 053702 (2015). Crossref

6. L. Yu, Y. He, A. Chiou, and Y. Sheng, “Deformation of biconcave Red Blood Cell in the Dual-beam Optical Tweezers,” Proceedings of the 2011 COMSOL Conference, Boston (2011).

7. H. M. Nussenzveig, “Cell membrane biophysics with optical tweezers,” European Biophysics Journal 47(5), 499-514 (2018). Crossref

8. A. V. Korobtsov, S. Kotova, N. Losevsky, A. Mayorova, V. Patlan, E. Timchenko, N. Lysov, and E. Zarubina, “Optical tweezers technique for the study of red blood cells deformation ability,” Laser Physics 22(7), 1265-1270 (2012). Crossref

9. S. Hu, D. Sun, “Automated transportation of single cells using robot-tweezer manipulation system,” Journal of Laboratory Automation 16(4), 263-270 (2011). Crossref

10. T. Sugiura, S. Maeda, and A. Honda, “Pulse laser assisted optical tweezers for biomedical applications,” 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, 4479-4481 (2012). Crossref

11. A. Y. Maklygin, A. V. Priezzhev, A. Karmenian, S. Y. Nikitin, I. S. Obolenskii, A. E. Lugovtsov, and K. Li, “Measurement of interaction forces between red blood cells in aggregates by optical tweezers,” Quantum Electronics 42(6), 500–504 (2012). Crossref

12. V. V. Tuchin, “Fundamentals of laser biomedicine,” Chap. 1 in Lasers and fiber optics in biomedical research, V.V. Tuchin (Ed.), 2nd edition, Fizmatlit, Moscow, 10-66 (2010) [in Russian].

13. A. V. Priezzhev, K. Lee, N. N. Firsov, and J. Lademann, “Optical Study of RBC Aggregation in Whole Blood Samples and Single Cells,” Chap. 1 in Handbook on Optical Biomedical Diagnostics, V. V. Tuchin (Ed.), 2nd Edition, SPIE Press Bellingham, WA, United States (2016). Crossref

14. O. Baskurt, B. Neu, and H. Meiselman, Red Blood Cell Aggregation, CRC Press, Boca Raton, United States (2012).

15. S. Chien, L. A. Sung, S. Simchon, M. M. L. Lee, K.-m. Jan, and R. Skalak, “Energy balance in red cell interactions,” Annals of the New York Academy of Sciences 416(1), 191-206 (1983). Crossref

16. K. Lee, C. Wagner, and A. V. Priezzhev, “Assessment of the “crossbridge”-induced interaction of red blood cells by optical trapping combined with microfluidics,” Journal of Biomedical Optics 22(9), 091516 (2017) Crossref

17. K. Lee, A. Danilina, A. Potkin, M. Kinnunen, A. Priezzhev, and I. Meglinski, “RBC aggregation dynamics in autologous plasma and serum studied with two-channel optical tweezers,” Proceedings of SPIE 9917, 991704 (2016). Crossref

18. K. Lee, A. Muravyov, A. Semenov, C. Wagner, A. Priezzhev, E. Lyubin, and A. Fedyanin, “Gamma globulins-induced interaction between two red blood cells: forces measurement with optical tweezers,” Proceedings of SPIE 10336, 1033606 (2017). Crossref

19. J. Tripette, T. Alexy, M.-D. Hardy-Dessources, D. Mougenel, E. Beltan, T. Chalabi, R. Chout, M. Etienne-Julan, O. Hue, H. J. Meiselman, and P. Connes, “Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease,” Haematologica 94(8), 1060-1065 (2009). Crossref

20. O. Baskurt, H. Meiselman, “Erythrocyte aggregation: basic aspects and clinical importance,” Clinical Heomohreology and Microcirculation 53(1-2), 23-37 (2013). Crossref

21. E. Konstantinova, L. Ivanova, T. Tolstaya, and E. Mironova, “Rheological properties of blood and parameters of platelets aggregation in arterial hypertension,” Clinical Hemorheology and Microcirculation 35(1-2), 135-138 (2006).

22. M. D. Khokhlova, E. V. Lyubin, A. G. Zhdanov, A. A. Fedyanin, S. Y. Rykova, and I. A. Sokolova, “Normal and system lupus erythematosus red blood cell interactions studied by double trap optical tweezers: direct measurements of aggregation forces,” Journal of Biomedical Optics 17(2), 025001 (2012). Crossref

23. G. Cicco, A. Pirrelli, “Red blood cell (RBC) deformability, RBC aggregability and tissue oxygenation in hypertension,” Clinical Hemorheology and Microcirculation 21(3-4), 169-177 (1999).

24. B. Sandhagen, “Red cell fluidity in hypertension,” Clinical Hemorheology and Microcirculation 21(3-4), 179-181 (1999).

25. P. Gyawali, R. S. Richards, D. L. Hughes, and P. Tinley, “Erythrocyte aggregation and metabolic syndrome,” Clinical Hemorheology and Microcirculation 57(1), 73-83 (2014). Crossref

26. P. Gyawali, R. S. Richards, and E. U. Nwose, “Erythrocyte morphology in metabolic syndrome,” Expert Review of Hematology 5(5), 523-531 (2012). Crossref

27. E. Pytel, P. Duchnowicz, P. Jackowska, K. Wojdan, M. Koter-Michalak, and M. Broncel, “Disorders of erythrocyte structure and function in hypertensive patients,” Medical Science Monitor 18(8), 331-336 (2012). Crossref

28. M. Kaczmarska, M. Fornal, F. H. Messerli, J. Korecki, T. Grodzicki, and K. Burda, “Erythrocyte membrane properties in patients with essential hypertension,” Cell Biochemistry and Biophysics 67(3), 1089-1102 (2013). Crossref

29. J. Badlam, T. Bull, “Steps forward in the treatment of pulmonary arterial hypertension: latest developments and clinical opportunities,” Therapeutic Advances in Chronic Disease 8(2-3), 47–64 (2017). Crossref

30. T. Nieminen, G. Knöner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Physics of optical tweezers,” Methods in Cell Biology 82, 207-36 (2007).

31. A. Gennerich, Optical Tweezers. Methods and Protocols, Humana Press (2017).

32. Video demonstrations of experiments with laser tweezers, obtained by P.B. Ermolinskiy, A.E. Lugovtsov, A.I. Maslyanitsina, A.N. Semenov, L.I. Dyachuk, A.V. Priezzhev.

33. J. Lasch, G. Küllertz, and J. R. Opalka, “Separation of erythrocytes into age-related fractions by density or size? Counterflow centrifugation,” Clinical Chemistry and Laboratory Medicine 38(7), 629-632 (2000). Crossref

34. M. Tavakol, O. Abouali, M. Yaghoubi, and G. Ahmadi, “Dispersion and Deposition of Ellipsoidal Particles in a Fully Developed Laminar Pipe Flow Using Non-Creeping Formulations for Hydrodynamic Forces and Torques,” International Journal of Multiphase Flow 75, 54-67 (2015). Crossref

35. R. J. Fish, M. Neerman-Arbez, “Fibrinogen gene regulation,” Thrombosis and Haemostasis 108(3), 419-26 (2012). Crossref

36. A. N. Semenov, A. E. Lugovtsov, K. W. Li, A. A. Fabrichnova, Y. A. Kovaleva and A.V. Priezzhev, “Applying methods of diffuse light scattering and optical trapping for assessing blood rheological parameters: erythrocytes aggregation in diabetes mellitus,” Izvestie Saratov University (N.S.) 17(2), 85–97 (2017) [in Russian].

© 2014-2018 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+