Historical review of early researches on mitogenetic radiation: from discovery to cancer diagnostics

Elena V. Naumova orcid (Login required)
Rzhanov Institute of Semiconductor Physics, Russian Academy of Science, Novosibirsk, Russia

Anna E. Naumova
Saratov State University, Russia

Dmitry A. Isaev
All-Russian Research Institute of Irrigation Fish Breeding, Vorovsky township, Noginsky District, Moscow Region, Russia

Ilya V. Volodyaev
M.V. Lomonosov Moscow State University, Russia

Paper #3308 received 27 Oct 2018; revised manuscript received 15 Dec 2018; accepted for publication 18 Dec 2018; published online 31 Dec 2018.

DOI: 10.18287/JBPE18.04.040201


The review is devoted to the experimental studies of mitogenetic radiation (weak UV-chemiluminescence of biological objects) conducted between 1923 and 1948 years. In this period UV-radiation of various biological objects (so called inductors) and its influence on mitotic rate of other biological objects (detectors) were investigated very actively. Very promising results were obtained including the finding of the peptide tumor marker in blood, which was called cancer quencher due to its ability to quench UV-chemiluminescence of blood. Later these researches were interrupted and almost abandoned. The relevance of the scientific problems addressed in these works to this day is stated, the key experiments and the most valuable results obtained between 1923 and 1948 are described in details and subsequent researches are briefly traced up to the present. The prospects of future development are discussed.


mitogenetic radiation; Gurwitsch radiation; mitogenetic effect; biochemiluminescence; biophotonics; UV-chemiluminescence; distant interaction; ultraweak photon emission; cancer diagnostics; cancer quencher

Full Text:



1. A. G. Gurwitsch, “Die Natur des spezifischen Erregers der Zellteilung,” Archiv für mikroskopische Anatomie und Entwicklungsmechanik 100(1-2), 11-40 (1923).

2. A. G. Gurwitsch, “Physikalisches über mitogenetische Strahlen,” Archiv für mikroskopische Anatomie und Entwicklungsmechanik 103(3-4), 490-498 (1924).

3. O. Rahn, Invisible radiations of organisms, Gebruder Borntraeger, Berlin (1936).

4. A. G. Gurwitsch, L. D. Gurwitsch, Mitogenetic radiation, VIEM publishing house, Leningrad (1934) [in Russian].

5. S. Y. Zalkind, G. M. Frank, Mitogenetic rays and cell division, Gosizdat, Moscow – Leningrad (1930) [in Russian].

6. A. G. Gurwitsch, L. D. Gurwitsch, “Twenty Years of Mitogenetic Radiation: Emergence, Development, and Perspectives,” 21st Century Science and Technology 12(3), 41-53 (1999).

7. N. P. N. Database.

8. T. Reiter, D. Gábor, Zellteilung und Strahlung: Sonderheft der Wissenschaftlichen Veröffentlichungen aus dem Siemens-Konzern, Springer-Verlag, Berlin (1928).

9. G. M. Frank, A. G. Gurwitsch, “Zur Frage der Identität mitogenetischer und ultravioletter Strahlen,” Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen 109(3), 451-454 (1927).

10. J. Chariton, G. Frank, and N. Kannegiesser, “Über die Wellenlänge und Intensität mitogenetischer Strahlung,” Naturwissenschaften 18(19), 411-413 (1930).

11. G. Frank, “Das mitogenetische Reizminimum und -maximum und die Wellenlange mitogenetischer Strahlen,” Biol. Zentralbl 49, 129-141 (1929).

12. G. Frank, S. Rodionow, “Über den physikalischen Nachweis mitogenetischer Strahlung und die Intensität der Muskelstrahlung,” Die Naturwissenschaften 19(30), 659-659 (1931).

13. G. Frank, S. Rodionow, “Physikalische Untersuchung mitogenetischer Strahlung der Muskeln und einiger Oxydationsmodelle,” Biochem Zeitschr 249(4/6), 323-343 (1932).

14. S. Rodionow, G. M. Frank, “On the measurements of mitogenetic radiation by means of a photoelectron register,” Archive of Biological Sciences. Ser B. 35(1), 277-288 (1934) [in Russian].

15. L. L. Wassiliew, G. M. Frank, and E. E. Goldenberg, “Versuche über die mitogenetische Strahlung des Nerven,” Biol. Zentralbl. 51(5), 225-231 (1931).

16. G. M. Frank, M. Popoff, “Le rayonnement mitogénétique du muscle en contraction,” Compte Rendu de l'Academie des Sciences 188, 1010 (1929).

17. G. Frank, M. Kurepina, “Die gegenseitige Beeinflussung der Seeigeleier als mitogenetischer Effekt betrachtet,” Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen 121(4), 634-638 (1930).

18. G. Frank, M. Popoff, “Die mitogenetische Strahlung des Muskels und ihre Verwertung zur Analyse der Muskelkontraktion,” Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere 223(1), 301-328 (1930).

19. G. Frank, “Über die Erforschung mitogenetischer Strahlung mittels einer neuen nephelometrischen Methode,” Biol. Zentralbl. 52(1), 1-12 (1932).

20. A. G. Gurwitsch, L. D. Gurwitsch, “Ultra-Violet Chemi-Luminescence,” Nature 143(3633), 1022-1023 (1939).

21. R. Audubert, “Die Emission von Strahlung bei chemischen Reaktionen,” Angewandte Chemie 51(11), 153-163 (1938).

22. A. G. Gurwitsch, L. D. Gurwitsch, An introduction to the teaching of mitogenesis, USSR Academy of Medical Sciences Press, Moscow (1948) [in Russian].

23. A. A. Gurwitsch, The problem of mitogenetic emission as an aspect of molecular biology, «Meditzina», Leningrad (1968) [in Russian].

24. A. G. Gurwitsch, L. D. Gurwitsch, S. Y. Zalkind, and B. S. Pesochensky, The teaching of the cancer quencher: Theory and clinics, USSR Academy of Medical Sciences Press, Moscow (1947).

25. B. S. Pesochensky, The phenomenon of the mitogenetic radiation quenching in blood in cancer and "precancer", Dr. Med. Sci. Dissertation, Leningrad Oncological Institute, Leningrad (1942) [in Russian].

26. B. S. Pesochensky, “Quenching of mitogenetic radiation of blood in cancer and precancerous diseases,” Chap. in Collected volume on mitogenesis and theory of biological field, A. G. Gurvitsch (Ed.), Pub.house of the USSR Academy of Medical Sciences, Moscow, 102-114 (1947).

27. Е. Е. Avchina, On the prognostic value of the reaction of quenching of the mitogenetic radiation of blood in the treatment of uterine cancer, Cand. Med. Sci. Dissertation, Leningrad (1950) [in Russian].

28. I. V. Volodyaev, L. V. Beloussov, “Revisiting the mitogenetic effect of ultra-weak photon emission,” Frontiers in Physiology 6(00241), 241 (2015).

29. G. W. Taylor, E. N. Harvey, “The theory of mitogenetic radiation,” Biolog. Bull. 61(3), 280-293 (1931).

30. E. Lorenz, “Search for Mitogenetic Radiation by Means of the Photoelectric Method,” J. Gen. Physiol. 17(6), 843-62 (1934).

31. B. Rajewsky, “Anordnung zur Messung kleinster Lichtintensitäten,” Z. Physik 63, 576 (1930).

32. B. Rajewsky, “Zur Frage des physikalischen Nachweises der Gurwitsch-Strahlung,” Chap. in Zehn Jahre Forschung auf dem physikalisch-medizinischen Grenzgeibiet, F. Dessauer (Ed.), Georg Thieme Verlag, Leipzig, 244-257 (1931).

33. B. Rajewsky, “Ultraviolett-Strahlung des Eiweiss,” Klinische Wochenschrift 10(36), 1672-1673 (1931).

34. W. W. Siebert, H. Seffert, “Physikalischer Nachweis der Gurwitsch-Strahlung mit Hilfe eines Differenzverfahrens,” Naturwissenschaften 21(9), 193-194 (1933).

35. H. Barth, “Versuche zum physikalischen Nachweis von mitogenetischer Strahlung,” Archive of Biological Sciences. Ser. B. 35(1), 29-35 (1934).

36. O. Glasser, H. Barth, “Studies on the Problem of Mitogenetic Radiation,” Radiology 30(1), 62-67 (1938).

37. L. Grebe, A. Krost, and L. Peukert, “Versuche zum physicalischen Nachweis der mitogenetische Strahlung,” Strahlentherapie 60, 538-571 (1938).

38. Y. A. Vladimirov, Ultraweak luminescence accompanying biochemical reactions, NASA, C.F.S.T.I., Springfield, Vermont (1966).

39. B. N. Tarusov, I. I. Ivanov, and Y. M. Petrusevich, Ultraweak Luminescence of Biological Systems, Moscow univeristy press, Moscow (1967) [in Russian].

40. Y. A. Vladimirov, E. V. Proskurnina, “Free radicals and cell chemiluminescence,” Biochemistry (Moscow) 74(13), 1545-1566 (2009).

41. V. L. Voeikov, “Reactive oxygen species, water, photons and life,” Rivista di biologia 103(2-3), 321-342, (2010).

42. M. Cifra, P. Pospisil, “Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications,” Journal of Photochemistry and Photobiology B: Biology 139, 2-10 (2014).

43. A. A. Gurwitsch, V. F. Eremeev, and Y. A. Karabchievsky, “Ultraweak emission in the visible and ultraviolet regions in oxidation of solutions of glycine by hydrogen peroxide,” Nature 206, 20-2 (1965).

44. N. A. Troitskii, S. V. Konev, and M. A. Katibnikov, “Studies on ultraviolet hemiluminescence of biological systems,” Biofizika 6, 238-240 (1961).

45. S. V. Konev, I. T. Lyskova, and D. G. Nisenbaum, “Very weak bioluminescence of cells in the ultraviolet region of the spectrum and its biological role,” Biofizika 11(2), 361-363 (1966) [in Russian].

46. A. A. Gurwitsch, V. F. Eremeev, and Y. A. Karabchievsky, Energy bases of mitogenetic radiation and its registration on photomultipliers, Meditzina, Moscow (1974) [in Russian].

47. T. I. Quickenden, R. N. Tilbury, “Luminescence spectra of exponential and stationary phase cultures of respiratory deficient Saccharomyces cerevisiae,” Journal of Photochemistry and Photobiology B: Biology 8(2), 169-174 (1991).

48. R. N. Tilbury, T. I. Quickenden, “Luminescence from the Yeast Candida utilis and Comparisons across 3 Genera,” Journal of Bioluminescence and Chemiluminescence 7(4), John Wiley and Sons, 245-253 (1992).

49. F. A. Popp, Biophotonen. Ein neuer Weg zur Lösung des Krebsproblems. Bd. 6, Verlag für Medizin Dr. Ewald Fischer, Heidelberg (1976).

50. O. Kučera, M. Cifra, “Cell-to-cell signaling through light: just a ghost of chance?” Cell Communication and Signaling 11, 87 (2013).

51. S. N. Mayburov, I. V. Volodyaev, “Photons Production and Communications in Biological Systems,” Progress In Electromagnetics Research Symposium Proceedings, Moscow, Russia, 1937-1941 (2009).

52. L. V. Beloussov, A. B. Burlakov, and N. N. Luchinskaya, “Statistical and Frequency-Amplitude Characteristics of Ultraweak Emissions of the Loach Eggs and Embryos under the Normal Conditions and during Their Optic Interactions. 1. Characteristics of Ultraweak Emission in Normal Development and the Optic Role of Egg Envelopes,” Russian Journal of Developmental Biology 33(3), 174-181 (2002).

53. L. V. Beloussov, A. B. Burlakov, and N. N. Luchinskaya, “Statistical and Frequency-Amplitude Characteristics of Ultraweak Emissions of the Loach Eggs and Embryos under the Normal Conditions and upon Their Optic Interactions. 2. Changes in Characteristics of Ultraweak Emissions upon Optic Interaction of Groups of Embryos of Different Ages,” Russian Journal of Developmental Biology 34(6), 379–388 (2003).

54. L. V. Belousov, F. A. Popp, and N. I. Kazakova, “Ultraweak emissions from chicken eggs and embryos: the nonadditive interaction of 2 emitters and stable nonequilibrium,” Ontogenez 28(5), 377-388 (1997) [in Russian].

55. V. F. Eremeev, “Analysis of the mechanism governing mitogenetic radiation of the liver in mice with implanted cancers,” Bulletin of Experimental Biology and Medicine 51(4), 486–489 (1961).

56. M. Wainwright, K. Killham, C. Russell, and S. J. Grayston, “Partial evidence for the existence of mitogenetic radiation,” Microbiology 143, 1-3 (1997).

57. M. Wainwright, “Historical and recent evidence for the existence of mitogenetic radiation,” Perspectives in Biology and Medicine 41(4), 565-571 (1998).

58. M. Wainwright, “Hypothesis - can UV produced by intracellular bacteria cause cancer?” Microbiology 144, 3239-3240 (1998).

59. M. Wainwright, “Forgotten microbiology - back to the future,” Microbiology Today 27, 8-9 (2000).

60. A. V. Budagovskij, Distant intercellular interaction, NPLC «Technika», Moscow (2004) [in Russian].

61. A. B. Burlakov, O. V. Burlakova, and V. A. Golichenkov, “Distance interactions of loach embryo in different stage of development,” Doklady Akademii nauk 368(4), 562-564 (1999) [in Russian].

62. A. B. Burlakov, O. V. Burlakova, and V. A. Golichenkov, “Distant wave-mediated interactions in early embryonic development of the loach Misgurnus fossilis L.,” Russian Journal of Developmental Biology 31(5), 287–292 (2000).

63. Y. A. Nikolaev, “Distant interactions between bacterial cells,” Microbiology 61(6), 751-754 (1992).

64. M. V. Trushin, “Light-mediated "conversation" among microorganisms,” Microbiological Research 159(1), 1-10 (2004).

65. M. V. Trushin, “Studies on distant regulation of bacterial growth and light emission,” Microbiology 149, 363-368 (2003).

66. D. Fels, “Cellular Communication through Light,” PLoS ONE 4(4), e5086 (2009).

67. L. W. E. Tessaro, B. T. Dotta, and M. A. Persinger, “Bacterial biophotons as non-local information carriers: Species-specific spectral characteristics of a stress response,” MicrobiologyOpen 761 (2018).

68. M. V. Trushin, “Distant non-chemical communication in various biological systems,” Rivista di biologia 97(4), 399-432 (2004).

69. F. A. Popp, A. A. Gurwitsch, H. Inaba, J. Slawinski, G. Cilento, K. H. Li, W. P. Mei, M. Galle, R. Neurohr, R. Van Wijk, D. P. J. Schamhart, W. B. Chwirot, and W. Nagl, “Biophoton emission. Multi-author review,” Experientia 44(7), 543-600 (1988).

70. M. Cifra, J. Z. Fields, and A. Farhadi, “Electromagnetic cellular interactions,” Progress in Biophysics and Molecular Biology 105(3), 223-246 (2011).

71. F. Scholkmann, D. Fels, and M. Cifra, “Non-chemical and non-contact cell-to-cell communication: a short review,” American Journal of Translational Research 5(6), 586-593 (2013).

72. R. Van Wijk, “Bio-photons and bio-communication,” Journal of Scientific Exploration 15(2), 183-197 (2001).

73. A. G. Gurwitsch, L. D. Gurwitsch, Mitogenetic radiation: physical and chemical bases and applications in biology and medicine, Medgiz, Moscow (1945) [in Russian].

74. S. Y. Zalkind, Mitogenetic rays, USSR Academy of Sciences Press, Moscow, Leningrad (1935) [in Russian].

75. J. B. Tuthill, O. Rahn, “Zum Nachweis mitogenetischer Strahlung durch Hefesprossung,” Archiv für Mikrobiologie 4(1-4), 565-573 (1933).

76. A. J. Ferguson, O. Rahn, “Zum Nachweis mitogenetischer Strahlung durch beschleunigtes Wachstum von Bakterien,” Archiv für Mikrobiologie 4(1-4), 574-582 (1933).

77. L. K. Wolff, G. Ras, “Einige Untersuchungen über die mitogenetischen Strahlen von Gurwitsch,” Zbl. f. Bakteriol. 123, 257-270 (1931).

78. L. K. Wolff, G. Ras, “Ueber mitogenetische Strahlen. IV. Ueber Sekundärstrahlung.,” Centralbl. Bakt. Paras, und Infck. Abt. (128), 306 (1933).

79. A. Hollaender, “The problem of mitogenetic rays,” Chap. in Biological effects of radiation, B. Duggar (Ed.), McGraw-Hill Book Company, Inc., NY, London, 919-958 (1936).

80. A. G. Gurwitch, Das Problem der Zellteilung physiologisch betrachtet, Julius Springer, Berlin (1926).

81. L. Acs, “Über echte mitogenetische Depressionen. Bakterienantagonismus und mitogenetische Strahlung,” Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten 6, 342-350 (1933).

82. W. W. Siebert, “Über die mitogenetische Strahlung des Arbeitsmuskels und einiger anderer Gewebe,” Biochem. Z. 202, 115-122 (1928).

83. R. Ruyssen, “Sur l'energie et les limites de longueur d'onde des rayons mitogenetiques,” Acta Brev. Neerl. 3, 141-142 (1933).

84. A. G. Gurwitsch, L. D. Gurwitsch, “Über ultraviolette Chemolumineszenz der Zellen im Zusammenhang mit dem Problem des Carcinoms.,” Biochemische Zeitschrift 196(4-6), 257-275 (1928).

85. M. Kisliak-Statkewitsch, “Die mitogenetische Strahlung des Carcinoms,” Zeitschrift für Krebsforschung 29(1), 214-219 (1929).

86. L. Gurwitsch, A. Gurwitsch, “Die mitogenetische Strahlung des Carcinoms,” Zeitschrift für Krebsforschung 29(1), 220-233 (1929).

87. A. G. Gurwitsch, Die mitogenetische Strahlung, Julius Springer, Berlin (1932).

88. H. P. Ypsilanti, R. Paltauf, “Zur Frage des Nachweises von Wachstumstrahlen in malignen tierischen Tumoren,” Zeitschrift für Krebsforschung 32(1-2), 372-376 (1930).

89. M. Baron, “Analyse der mitogenetischen Induktion und deren Bedeutung in der Biologie der Hefe,” Planta 10(1), 28-83 (1930).

90. J. Magrou, M. Magrou, “Radiations emises par le Bacterium tumefaciens,” Rev. Path. Veg. et Ent. Agr. 14, 244-244 (1927).

91. M. J. Magrou, M. M. Magrou, and M. P. Reiss, “Action à distance de divers facteurs sur le developpement de l'oeuf d'Oursin,” Compte Rendu de l'Academie des Sciences 189, 779 (1929).

92. W. W. Siebert, “Über eine neue Beziehung von Muskeltätigkeit und Wachstumsvorgängen,” Zeitsch. Klin. Med. 109, 360-370 (1928).

93. L. Acs, “Über die mitogenetische Strahlung der Bakterien,” Centr. Bakt. I Abt. Orig. 120(1/2), 116-124 (1931).

94. L. Gurwitsch, A. Anikin, “Das Cornealepithel als Detektor und Sender mitogenetischer Strahlung,” Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen 113(4), 731-739 (1928).

95. L. J. Blacher, N. W. Bromley, “Resorptionsprozesse als Quelle der Formbildung. II. Mitogenetische Ausstrahlungen bei der Regeneration des Kaulquappenschwanzes,” Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen 122(1), 79-87 (1930).

96. L. J. Blacher, N. W. Bromley, “Resorptionsprozesse als Quelle der Formbildung. IV. Mitogenetische Ausstrahlungen bei der Schwanzregeneration der Urodelen,” Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen 123(2), 240-265 (1931).

97. L. J. Blacher, O. G. Holzmann, “Resorptionsprozesse als Quelle der Formbildung. III. Mitogenetische Ausstrahlungen während der Metamorphose bei Urodela,” Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen 123(2), 230-239 (1931).

98. L. J. Blacher, A. I. Irichimowitsch, L. D. Liosner, and M. A. Woronzowa, “Resorptionsprozesse als Quelle der Formbildung. IX Einfluss der mitogenetischen Strahlen auf die Geschwindigkeit der Regeneration,” Roux' Archiv 127, 339-352 (1932).

99. G. K. Chrustschoff, “Über die Ursachen des Gewebewachstums in vitro. 1. Die Quellen der mitogenetischen Strahlen in Gewebskulturen,” Archiv für experimentelle Zellforschung, 9, 203-213 (1930).

100. A. A. Gurwitsch, “L'excitation mitogenetique du systeme nerveux central,” Ann. de Physiol. et. Physicochem. Biol. 10, 1153-1153, (1934).

101. L. D. Gurwitsch, S. Salkind, “Das mitogenetische Verhalten des Bluts Carcinomatoser,” Biochem. Z. 211, 362-362 (1929).

102. W. W. Siebert, “Die mitogenetische Strahlung des Bluts und des Harns gesunder und kranker Menschen,” Biochem. Z. 226(4/6), 253-256 (1930).

103. J. Magrou, “Action a distance et embryogenese,” Radiobiologia 1, 32 (1932).

104. G. Frank, S. Salkind, “Die mitogenetische Strahlung der Seeigeleier,” Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen 110(3), 626-630 (1927).

105. M. A. Baron, “Über mitogenetische Strahlung bei Protisten,” Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen 108(4), 617-633 (1926).

106. H. Guillery, “Uber Bedingungen des Wachstums auf Grund von Untersuchungen an Gowebskulturen,” Virchows Archiv 279, 311-311 (1929).

107. G. K. Chrustschoff, “Mitogenetic macroeffect in tissue cultures,” Archive of Biological Sciences. Ser B. 35(1), 317-324 (1934) [in Russian].

108. L. K. Wolff, G. Ras, “Effect of Mitogenetic Rays on Eggs of Drosophila melanogaster,” Nature 133(3361), 499-499 (1934).

109. G. Protti, “Il fenomeno della emoradiazione applicato alla clinica,” Radiobiologia 1(4), 49-49 (1930).

110. H. Gesenius, “Über die Gurwitsch-Strahlung menschlichen Bluts und ihre Bedeutung für die Carcinom-Diagnostik,” Biochem. Z. 226, 257 (1930).

111. S. N. Brainess, “Problems of fatigue and activity, and mitogenetic radiation,” Archive of Biological Sciences. Ser B. 35(1), 325-340 (1934) [in Russian].

112. V. V. Yefimov, S. P. Letunov, “Influence of work, fatigue, and rest on the blood emission of Gurwitsch's rays,” Archive of Biological Sciences. Ser B. 35(1), 157-168 (1934) [in Russian].

113. A. G. Gurwitsch, “Methodik der mitogenetischen Strahlenforschung,” Chap in Handbuch der biologischen Arbeitsmethoden, E. Abderhalden (Ed.), 2/2, Urban & Schwarzenberg, Berlin, Wien, 1401-1470 (1929).

114. V. F. Sarafanow, “On the methods of measuring the growth of yest by means of colorimeters,” Archive of Biological Sciences. Ser B. 35(1), 309-316 (1934) [in Russian].

115. K. Nekrasov, D. Laptev, and D. Vetrov, “Automatic detection of cell division intensity in budding yeast,” Proceedings of International Conference on Pattern Recognition and Image Analysis (PRIA) 2, 335-339 (2010).

116. A. Hollaender, W. D. Claus, An experimental study of the problem of mitogenetic radiation, National research council of the National academy of sciences, Washington (1937).

117. M. Nakaidzumi, H. Schreiber, “Untersuchungen uber das mitogemrtisehe Strahlungsproblem,” Biochem. Z. 237, 358 (1931).

118. K. H. Kreuchen, J. B. Bateman, “Physikalische und biologische Untersuchungen uber mitogenetische Strahlung,” Protoplasma 22, 243 (1932).

119. L. K. Wolff, G. Ras, “Über mitogenetische Strahlen. V. Über die Methodik zum Nachweis von Gurwitschstrahlen,” Centralbl. Bakt. Paras. und Infck. 128, 314-319 (1933).

120. W. Stempell, “Nachweis der von frischem Zwiebelsohlenbrei ausgesandten Strahlen durch Störung der Liesegangschen Ringbildung,” Biol. Zentralbl. 9, 607 (1929).

121. W. W. Siebert, “Das Stempell-Phänomen an den Liesegangschen Ringen,” Biochemishie Zeitschkrift 220(4-6), 487-492 (1930).

122. W. Stempell, G. V. Romberg, “Über Organismenstrahlung und Organismengasung,” Protoplasma 13(1), 28-235 (1931).

123. W. Stempell, Die unsichtbare Strahlung der Lebewesen, Verlag von Gustav Fischer, Jena (1932).

124. W. Stempell, “Das Wasserstoffsuperoxyd als Detektor für Organismenstrahlung und Organismengasung,” Protoplasma 12, 538-548 (1931).

125. M. Heinemann, “Physico-chemical test for mitogenetic (Gurwitsch) rays,” Nature 134, 701 (1934).

126. M. Heinemann, “Physico-chemical test for mitogenetic (Gurwitsch) rays,” Acta Brevia Nederland 5, 15 (1935).

127. W. W. Siebert, H. Seffert, “Zur Frage des Physikalischen Nachweis der Gurwitsch-Strahlung,” Archive of Biological Sciences. Ser B. 35, 177-182 (1934).

128. T. I. Quickenden, S. S. Que Hee, “The luminescence of water excited by ambient ionizing radiation,” Radiation research 46(1), 28-35 (1971).

129. T. I. Quickenden, S. S. Que Hee, “The spectral distribution of the luminescence emitted during growth of the yeast Saccharomyces cerevisiae and its relationship to mitogenetic radiation,” Photochemistry and Photobiology 23(3), 201-204 (1976).

130. T. I. Quickenden, R. N. Tilbury, “Growth dependent luminescence from cultures of normal and respiratory deficient Saccharomyces cerevisiae,” Photochem. Photobiol. 37(3), 337-344 (1983).

131. J. Ponomarewa, “Die mitogenetische Spektralanalyse. III. Mitteilung: Das detaillierte glykolytische Spektrum,” Biochem. Z. 239, 424 (1931).

132. G. Decker, “Über die Schärfe mitogenetischer Spektren,” Protoplasma 25(1), 515-527 (1936).

133. S. Y. Zalkind, “Mitogenetic rays and malignant neoplasms,” Priroda 6, 53-59 (1938).

134. A. A. Gurwitsch, “Mitogenetic excitation of the central nervous system,” Archive of Biological Sciences. Ser B. 35(1), 127-140 (1934) [in Russian].

135. L. D. Gurwitsch, “Mitogenetic spectrum at excitation of proprioceptive nerve filaments,” Archive of Biological Sciences. Ser B. 35(1), 141-144 (1934) [in Russian].

136. I. V. Tsoglina, “Mitogenetic physiological spectrum of motor fibers,” Archive of Biological Sciences. Ser B. 35(1), 341-342 (1934) [in Russian].

137. N. Kannegiesser, “Die mitogenetische Spektralanalyse. I.,” Biochem. Zeitsch. 236, 415-424 (1931).

138. L. K. Wolff, G. Ras, “Etudes sur le Rayonnement suivant Gurwitsch. VI. Le rayonnement secondaire.,” K. Akad. Wetensch. 37(1), 430–445 (1934).

139. H. Gesenius, “Blutstrahlung und Carcinomdiagnostik,” Radiobiologia 1(2), 33-36 (1932).

140. W. Siebert, “Die "mitogenetische" Strahlung des Blutes,” Chap. in Handbuch der allgemeinen Hämatologie, H. Hirschfeld, A. Hittmair (Eds.), Urban & Schwarzenberg, Berlin, Wien, 1339 (1934).

141. M. Heinemann, “Cytagenin und „mitogenetische Strahlung” des Blutes,” Klinische Wochenschrift 11(33), 1375-1378 (1932).

142. S. Y. Zalkind, “Mitogenetic rays and some problems of clinical medicine,” Priroda 1, 53-59 (1938) [in Russian].

143. Y. S. Klenitsky, “Influence of the surgical tumour removal on the mitogenetic radiation of blood,” Archive of Biological Sciences. Ser B. 35(1), 213-218 (1934) [in Russian].

144. M. B. Novikov, “The influence of extirpation of a cancer tumor on the presence of mitogenetic radiation quencher in blood and organs of white mice,” Archive of Biological Sciences. 51(3), 56-63 (1938) [in Russian].

145. O. Rahn, “The Disagreement in Mitogenetic Experiments, a Problem in Bacterial Physiology,” J. Bacteriol. 28(2), 153-158 (1934).

146. O. Rahn, “The physico-chemical basis of biological radiations,” Chap. in Cold Spring Harbor Symposia on Quantitative Biology, Vol. II, Berlin, 226–240 (1934).

147. J. B. Tuthill, О. Rahn, “Analysis of the bud formation of the Baron Method,” Archive of Biological Sciences. Ser B. 35(1), 289-296 (1934).

148. O. Rahn, “Mitogenetic radiation,” Tabulae biologicae 14, 1-35 (1937).

149. L. Colli, U. Facchini, “Light emission by germinating plants,” Il Nuovo Cimento 12(1), 150-153 (1954).

150. Y. A. Vladimirov, F. F. Litvin, “Investigations on ultraweak luminescence in biological systems,” Biophysics 4(5), 601-605 (1959) [in Russian].

151. B. N. Tarusov, A. I. Polivoda, and A. I. Zhuravlev, “Detection of chemiluminescence in the liver of irradiated mice,” Radiobiologiya 1(1), 150-151 (1961) [in Russian].

152. B. N. Tarusov, A. I. Polivoda, and A. I. Zhuravlev, “Study on ultra-weak spontaneous luminescence of animal cells,” Biofizika 6(4), 490-492 (1961) [in Russian].

153. B. N. Tarusov, A. I. Polivoda, A. I. Zhuravlev, and E. N. Sekamova, “Ultraweak spontaneous luminescence in animal tissue,” Tsitologiia 4, 696-699 (1962) [in Russian].

154. S. V. Konev, “The nature and biological importance of ultraweak luminescence of a cell,” Bioluminescence 21, 181 (1965).

155. A. Boveris, E. Cadenas, and B. Chance, “Ultraweak chemiluminescence: a sensitive assay for oxidative radical reactions,” Fed. Proc. 40(2), 195-198 (1981).

156. Y. A. Vladimirov, A. I. Archakov, Lipid peroxidation in biological membranes, Nauka, Moscow (1972) [in Russian].

157. B. N. Tarusov, Ultra-weak luminescence of living organisms, Znanie, Moscow (1972) [in Russian].

158. M. Vacher, I. F. Galvan, B. W. Ding, S. Schramm, R. Berraud-Pache, P. Naumov, N. Ferré, Y.-J. Liu, I. Navizet, D. Roca-Sanjuán, W. J. Baader, and R. Lindh, “Chemi- and Bioluminescence of Cyclic Peroxides,” Chemical Reviews 118(15), 6927−6974 (2018).

159. P. Pospisil, A. Prasad, and M. Rac, “Role of reactive oxygen species in ultra-weak photon emission in biological systems,” Journal of Photochemistry and Photobiology B: Biology 139, 11-23 (2014).

160. E. P. Sidorik, E. A. Bagley, and M. I. Danko, Cell biochemiluminescence during tumor process, Naukova dumka, Kiev (1989) [in Russian].

161. A. I. Zhuravlev, A. I. Zhuharvleva, Ultra-weak luminescence of blood serum and its value in complex diagnostics, Meditzina, Moscow (1975) [in Russian].

162. Y. I. Serkiz, E. E. Chebotarev, V. A. Baraboy, V. E. Orel, and G. E. Chebotarev, Blood chemiluminescence in experimental and clinical oncology, Naukova dumka, Kiev (1984) [in Russian].

163. V. A. Baraboi, V. É. Orel, “Analysis of correlation between kinetics of blood serum chemiluminescence and experimental tumor growth,” Bulletin of Experimental Biology and Medicine 107(2), 240-243 (1989).

164. W. S. Metcalf, T. I. Quickenden, “Mitogenetic Radiation,” Nature 216(5111), 169-170 (1967).

165. T. I. Quickenden, S. S. Que Hee, “Weak luminescence from the yeast Saccharomyces cerevisiae and the existence of mitogenetic radiation,” Biochem. Biophys. Res. Commun. 60(2), 764-770 (1974).

166. T. I. Quickenden, S. S. Que Hee, “On the Existence of Mitogenetic Radiation,” Speculations in Science and Technology 4(5), 453-464 (1981).

167. T. I. Quickenden, M. J. Comarmond, and R. N. Tilbury, “Ultraweak bioluminescence spectra of stationary phase Saccharomyces cerevisiae and Schizosaccharomyces pombe,” Photochemistry and Photobiology 41(5), 611-615 (1985).

168. R. N. Tilbury, T. I. Quickenden, “Spectral and Time-Dependence Studies of the Ultraweak Bioluminescence Emitted by the Bacterium Escherichia-Coli,” Photochemistry and Photobiology 47(1), 145-150 (1988).

169. R. N. Tilbury, T. I. Quickenden, “The effect of cosmic-ray shielding on the ultraweak bioluminescence emitted by cultures of Escherichia coli,” Radiation Research 112(2), 398-402 (1987).

170. T. I. Quickenden, A. J. Matich, S. H. Pung, and R. N. Tilbury, “An attempt to stimulate cell division in Saccharomyces cerevisiae with weak ultraviolet light,” Radiation Research 117(1), 145-157 (1989).

171. F. A. Popp, J. J. Chang, A. Herzog, Z. Yan, and Y. Yan, “Evidence of non-classical (squeezed) light in biological systems,” Physics Letters A 293(1-2), 98-102 (2002).

172. F. A. Popp, K. H. Li, “Hyperbolic relaxation as a sufficient condition of a fully coherent ergodic field,” International Journal of Theoretical Physics 32(9), 1573-1583 (1993).

173. F. A. Popp, B. Ruth, W. Bahr, J. Böhm, P. Graß, G. Grolig, М. Rattemayer, H. G. Shmidt, and P. Wulle, “Emission of visible and ultraviolet radiation by active biological systems,” Collective phenomena 3, 187-214 (1981).

174. R. P. Bajpai, “Coherent nature of the radiation emitted in delayed luminescence of leaves,” Journal of Theoretical Biology 198(3), 287-299 (1999).

175. I. V. Volodyaev, L. V. Beloussov, “Ultraweak emissions of developing Xenopus laevis eggs and embryos,” Russian Journal of Developmental Biology 38(5), 322-328 (2007).

176. I. V. Volodyaev, L. V. Beloussov, “Optical interaction and Ultraweak Luminescence of Embryos of the Frog Xenopus laevis,” The 7th International Crimean Conference “Cosmos and Biosphere”, Sudak, Crimea, Ukraine, 158-159 (2006).

177. Y. A. Nikolaev, “Distant interaction in the bacterium Pseudomonas fluorescens as a factor of adhesion regulation,” Biophotonics and Coherent Systems, Proceedings of the 2nd Alexander Gurwitch conference, F.-A. Popp, L. V. Beloussov, V. L. Voeikov, and R. van Wijk (Eds.), Moscow University Press., Moscow, 259-266 (2000).

178. C. N. Novikov, N. D. Vilenskaya, E. V. Bouravleva, M. V. Fedorov, and V. L. Voeikov, “Analysis of Low-Level Photon Emission from Non-diluted Human Blood Points to the Regulatory Role of ROS in its Functional Activities,” International Symposium "Reactive Oxygen and Nitrogen Species: Diagnostic, Preventive and Therapeutic Values", St. Peterburg-Kizhi-St. Peterburg, 105-106 (2002).

179. C. N. Novikov, N. D. Vilenskaya, Y. Bulargina, and V. L. Voeikov, “Chemiluminescence during respiratory burst in nondiluted human blood can be enhanced by back-reflected photons,” Proceedings of SPIE 3569, 17-25 (1998).

180. V. L. Voeikov, Regulatory functions of reactive oxygen species in the blood and in aquatic model systems, D. Biol. Sc. Thesis, Moscow State University, Moscow (2003) [in Russian].

181. M. V. Trushin, “The possible role of electromagnetic fields in bacterial communication,” Journal of Microbiology, Immunology and Infection 36(3), 153-160 (2003).

182. V. P. Kaznacheev, L. P. Mikhaylova, Ultraweak radiation in cell interactions, Nauka, Novosibirsk (1981) [in Russian].

183. G. Albrecht-Buehler, “Rudimentary form of cellular "vision",” Proceedings of the National Academy of Sciences 89(17), 8288-8292 (1992).

184. G. Albrecht-Buehler, “Changes of cell behavior by near-infrared signals,” Cell Motility and the Cytoskeleton 32(4), 299-304 (1995).

185. A. Farhadi, C. Forsyth, A. Banan, M. Shaikh, P. Engen, J. Z. Fields, and A. Keshavarzian, “Evidence for non-chemical, non-electrical intercellular signaling in intestinal epithelial cells,” Bioelectrochemistry 71(2), 142-148 (2007).

186. I. V. Volodyaev, Ultra-weak emission and optical interaction in Xenopus eggs and embryos, Ph. D. Thesis, Moscow State University, Moscow (2007) [in Russian].

187. G. Reguera, “When microbial conversations get physical,” Trends in Microbiology 19(3), 105-113 (2011).

188. F. A. Popp, “Properties of biophotons and their theoretical implications,” Indian Journal of Experimental Biology 41(5), 391-402 (2003).

189. V. L. Voeikov, I. V. Baskakov, K. Kafkalias, and V. I. Naletov, “Initiation of degenerate-branched chain reaction of glycine deamination with ultraweak UV irradiation or hydrogen peroxide,” Bioorganicheskaya Khimiya 22(1), 39-47 (1996).

190. V. L. Voeikov, V. I. Naletov, “Weak Photon Emission of Non-Linear Chemical Reactions of Amino Acids and Sugars in Aqueous Solutions,” Chap. in Biophotons, J.-J. Chang, J. Fisch and F. A. Popp (Eds.), Springer Netherlands, Dordrecht, 93-108 (1998).

191. A. G. Gurwitsch, L. D. Gurwitch, “Quencher in cancer patients' blood, its value for diagnostic value and anti-quencher,” Archive of Biological Sciences 51(3), 40–44 (1938) [in Russian].

192. S. Y. Zalkind, “Mitogenetic radiation of blood and diagnosis of malignant neoplasms,” Soviet Medical Journal 17, 15-28 (1936) [in Russian].

193. L. I. Sneshko, The role of the spleen in the dynamics of cancer quencher (experimental study), Cand. Med. Sci. dissertation, Dnepropetrovsk State Medical Institute, Dnepropetrovsk (1955) [in Russian].

194. A. G. Gurwitsch, “Physical and chemical bases of mitogenetic radiation,” Bulletin of the USSR Academy of Sciences: Physics 9(4-5), 335-340 (1945) [in Russian].

© 2014-2020 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+