Optoacoustic gas-analysis for diagnostics of biosystems

Boris G. Ageev (Login required)
V. E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia

Olga Y. Nikiforova
V. E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia

Yurii N. Ponomarev
V. E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia

Valeria A. Sapozhnikova
V. E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia


Paper #3311 received 24 Dec 2018; revised manuscript received 20 Mar 2019; accepted for publication 20 Mar 2019; published online 29 Mar 2019.

DOI: 10.18287/JBPE19.05.010304

Abstract

A possibility of detecting biogenic gases by the laser optoacoustic gas-analysis method is shown. The construction and specifications of instruments, developed for this purpose, are described. Examples of the analysis of gas samples of various biological objects, like air, expired by patients, suffered from different illnesses, and residual gases in the wood of year rings of conifers are given together with recommendations on applying the received information.

Keywords

spectroscopy; absorption spectra; CO2 laser; carbon dioxide; tree rings; human breath

Full Text:

PDF

References


1. A. B. Antipov, V. A. Kapitanov, Y. N. Ponomarev, and V. A. Sapozhnikova, Photo-Acoustic Technique in Laser Spectroscopy of Molecular Gases, Nauka, Novosibirsk (1984).

2. V. P. Zharov, V. S. Letokhov, Photo-Acoustic Spectroscopy, Nauka, Moscow (1984).

3. B. G. Ageev, Y. N. Ponomarev, and B. A. Tikhomirov, Nonlinear Photo-Acoustic Spectroscopy of Molecular Gases, Nauka, Novosibirsk (1987).

4. V. Zeninari, V. A. Kapitanov, D. Courtois, and Y. N. Ponomarev, “Design and characteristics of differential Helmholtz resonant photoacoustic cell for gas detection,” Infrared Physics & Technology 40(1), 1–23 (1999). Crossref

5. V. A. Kapitanov, Y. N. Ponomarev, I. S. Tyryshkin, and A. P. Rostov, “Two-channel opto-acoustic diode laser spectrometer and fine structure of methane absorption spectra in 6070–6180 cm−1 region,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 66(4–5), 811–818 (2007). Crossref

6. V. A. Kapitanov, Y. N. Ponomarev, “High resolution ethylene absorption spectrum between 6035 and 6210 cm−1,” Applied Physics B 90(2), 235–241 (2008). Crossref

7. S. Bernegger, M. W. Sigrist, “CO-laser photoacoustic spectroscopy of gases and vapours for trace gas analysis,” Infrared Physics 30(5), 375–429 (1990). Crossref

8. P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Review of Scientific Instruments 61(7), 1779–1807 (1990). Crossref

9. V. S. Starovoitov, S. A. Trushin, and V. V. Churakov, “Use of lasers on isotope-substituted CO2 molecules in optoacoustic control of atmospheric pollution,” Journal of Applied Spectroscopy 59(5-6), 855–859 (1993). Crossref

10. B. G. Ageev, Y. N. Ponomarev, and V. A. Sapozhnikova, “Laser photoacoustic method for disc tree-ring gas analysis,” World Environment 2(2), 4–10 (2012). Crossref

11. B. G. Ageev, O. Y. Nikiforova, “Optoacoustic determination of carbon dioxide concentration in exhaled breath in various human diseases,” Journal of Applied Spectroscopy 83(5), 820–825 (2016). Crossref

12. I. V. Sherstov, K. V. Bychkov, V. A. Vasiliev, A. I. Karapuzikov, V. V. Spitsin, and S. B. Chernikov, “Two-channel CO2 laser system for heterodyne lidar,” Atmospheric and oceanic optics 18(3), 248–253 (2005).

13. A. I. Karapuzikov, I. V. Sherstov, B. G. Ageev, V. A. Kapitanov, and Y. N. Ponomarev, “Laser sensors-gas analyzers based on smart waveguide СО2 lasers and resonance photoacoustic detectors and their applications,” Atmospheric and oceanic optics 20(5), 418–423 (2007).

14. M. Phillips, “Breath tests in medicine,” Scientific American 267(1), 74–79 (1992). Crossref

15. P. J. Kramer, T. T. Kozlowski, Physiology of Woody Plants, Academic Press, New York (1979).

16. V. I. Kuznetsov, S. A. Tarakanov, N. I. Ryzhakov, V. T. Kogan, A. V. Kozlenyuk, and A. A. Rassadina, “Method of highly sensitive non-invasive diagnostics of functional states of organism,” Journal of New Medical Technologies 1 (2013).

17. D. V. Lapitski, R. F. Ermolkevich, S. M. Metelski, A. N. Ryapolov, I. A. Manichev, and V. G. Scherbitski, “Capnometry screening ability of ventilatory and circulatory disorders,” Military medicine 1(30), 54–57 (2014).

18. S. I. Lukash, “Problems of diagnostics of some diseases on exhaled air,” Computer means, networks and systems, 9, 62–71 (2010).

19. K. Stamyr, O. Vaittinen, J. Jaakola, J. Guss, M. Metsälä, G. Johanson, and L. Halonen, “Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy,” Biomarkers 14(5), 285–291 (2009). Crossref

20. J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, S. R. Sama, and D. K. Milton, “Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy,” Journal of Breath Research 5(3), 037108 (2011). Crossref

21. S. I. Lukash, “Development of the technique of measurement CO2 in exhaled air,” Computer means, networks and systems 10, 119–125 (2011).

22. D. V. Tishin, “Dendroclimatological study of Picea x fennica (Reg.) Kom. on the south border of its geographical range,” Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki 150(4), 219–225 (2008).

23. E. A. Vaganov, S. G. Shiyatov, and V. S. Mazepa, Dendroclimatic Study in Ural-Siberian Subarctic, Nauka, Novosibirsk (1996).

24. R. O. Teskey, A. Saveyn, K. Steppe, and M. A. McGuire, “Origin, fate and significance of CO2 in tree stems,” New Phytologist 177, 17–32 (2008). Crossref

25. B. Ageev, Y. Ponomarev, V. Sapozhnikova, and D. Savchuk, “A laser photoacoustic analysis of residual CO2 and H2O in Larch stems,” Biosensors 5(1), 1–12 (2015). Crossref

26. M. Rubino, D. M. Etheridge, C. M. Trudinger, C. E. Allison, M. O. Battle, R. L. Langenfelds, L. P. Steele, M. Curran, M. Bender, J. W. C. White, T. M. Jenk, T. Blunier, and R. J. Francey, “A revised 1000 year atmospheric δ13C-CO2 record from Law Dome and South Pole, Antarctica,” Journal of Geophysical Research: Atmospheres 118(15), 8482-8499 (2013). Crossref

27. V. A. Sapozhnikova, A. N. Gruzdev, B. G. Ageev, Y. N. Ponomarev, and D. A. Savchuk, “Relationship between CO2 and H2O variations in tree rings of Siberian stone pine and meteorological parameters,” Doklady Earth Sciences 450(2), 652–657 (2013). Crossref

28. S. E. Trumbore, A. Angert, N. Kunert, J. Muhr, and J. Q. Chambers, “What’s the flux? Unfaveling how CO2 fluxes from trees reflect underlying physiological processes,” New Phytologist 197(2), 353–355 (2013). Crossref

29. B. Bond-Lamberty, A. Thomson, “Temperature-associated increases in the global soil respiration record,” Nature 464(7288), 579–582 (2010). Crossref






© 2014-2020 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+