Dermatoscopy software tool for in vivo automatic malignant lesions detection

Semyon G. Konovalov (Login required)
Samara National Research University, Russia

Oleg A. Melsitov
Samara National Research University, Russia

Oleg O. Myakinin
Samara National Research University, Russia

Ivan A. Bratchenko
Samara National Research University, Russia

Alexander A. Moryatov
Samara State Medical University, Russia

Sergey V. Kozlov
Samara State Medical University, Russia

Valery P. Zakharov
Samara National Research University, Russia

Paper #3319 received 10 Oct 2018; revised manuscript received 9 Dec 2018; accepted for publication 19 Dec 2018; published online 31 Dec 2018.

DOI: 10.18287/JBPE18.04.040302


Dermatoscopy is one of the most popular non-invasive methods of skin tumors diagnostics. Digital dermatoscopy allows one to perform automatic data processing and lesions classification that significantly increases diagnostics accuracy compared to general physicians. In this article, we propose a dermatoscopy tool equipped software automatic classifier of dermatoscopic data. Noise reduction and image histogram equalization were performed during the initial step of preprocessing. After this step, a feature-detection step was performed; the program founds region of interest and calculates Haar transform, linear binary patterns, and color-texture features in different color spaces (RGB, HSV and LAB) for both tumor and healthy skin areas. Finally, evaluated features are used for classification by using Support Vector Machines (SVM). This classifier has been trained and tested using 160 dermatoscopic images made with polarized backscattered light. The article shows data for two classes separation: malignant melanoma versus non-melanoma tumors and malignant versus benign lesions. Proposed approach has achieved sensitivity of 83% and specificity of 65% for melanoma versus non-melanoma classification and sensitivity of 61% and specificity of 60% for malignant versus benign lesion classification. Performed cross-validation ensures stability of the classifier.


Classification; algorithm; cross-validation; image processing; dermatoscopy device

Full Text:



1. A. D. Kaprin, V. V. Starinsky, and G. V. Petrova (Eds.), Malignant tumors in Russia in 2016 (morbidity and mortality), Hertsen Moscow research oncology institute (2018).

2. Cancer Facts & Figures 2013, American Cancer Society, American Cancer Society, Atlanta (2013).

3. V. P. Zakharov, I. A. Bratchenko, D. N. Artemyev, O. O. Myakinin, S. V. Kozlov, A. A. Moryatov, and A. E. Orlov, “Multimodal Optical Biopsy and Imaging of Skin Cancer,” Chap. 17 in Neurophotonics and Biomedical Spectroscopy (2019) [in Print].

4. V. V. Anisimov, “Standard diagnostics of patients with suspicion of melanoma. Modern clinical classification,” Practical oncology 4(8), 12–22 (2001) [in Russian].

5. M. E. Celebi, Y. A. Aslandogan, W. V. Stoecker, H. Iyatomi, H. Oka, and X. Chen, “Unsupervised border detection in dermoscopy images,” Skin Research and Technology 13(4), 454-462 (2007).

6. J. Spigulis, I. Oshina, “Snapshot RGB mapping of skin melanin and hemoglobin,” Journal of Biomedical Optics 20(5), 050503 (2015).

7. G. Pagnanelli, H. P. Soyer, G. Argenziano, R. Talamini, R. Barbati, L. Bianchi, E. Campione, I. Carboni, A. M. Carrozzo, M. S. Chimenti, I. De Simoni, V. Falcomata, I. Filipe Neto, F. Francesconi, A. Ginebri, J. Hagman, G. C. Marulli, F. Palamara, A. P. Vidolin, P. Piemonte, R. Soda, and S. Chimenti, “Diagnosis of pigmented skin lesions by dermoscopy: web-based training improves diagnostic performance of non-experts,” British Journal of Dermatology, 148(4), 698–702 (2003).

8. A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, “Dermatologist-level classification of skin cancer with deep neural networks,” Nature 542(7639), 115–118 (2017).

9. V. Narayanamurthy, P. Padmapriya, A. Noorasafrin, B. Pooja, K. Hema, A. Y. F. Khan, K. Nithyakalyani, and F. Samsuri, “Skin cancer detection using non-invasive techniques,” RSC Advances, 8(49), 28095–28130 (2018).

10. X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, J. Malvehy, G. Pellacani, F. Noguero, G. Solomita, and T. Bosch, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” Journal of Biomedical Optics 22(6), 065006 (2017).

11. K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proceedings of the National Academy of Sciences 110(38), 15189–15194 (2013).

12. S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, “Automated melanoma detection with a novel multispectral imaging system: results of a prospective study,” Physics in Medicine and Biology 50(8), 1675–1687 (2005).

13. T. M. Jørgensen, A. Tycho, M. Mogensen, P. Bjerring, and G. B. E. Jemec, “Machine‐learning classification of non‐melanoma skin cancers from image features obtained by optical coherence tomography,” Skin Research and Technology 14(3), 364–369 (2008).

14. G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The Impact of In Vivo Reflectance Confocal Microscopy for the Diagnostic Accuracy of Melanoma and Equivocal Melanocytic Lesions,” Journal of Investigative Dermatology 127(12), 2759–2765 (2007).

15. V. Ahlgrimm-Siess, M. Laimer, H. S. Rabinovitz, M. Oliviero, R. Hofmann-Wellenhof, A. A. Marghoob, and A. Scope, “Confocal Microscopy in Skin Cancer,” Current Dermatology Reports 7(2), 105–118 (2018).

16. V. P. Zakharov, I. A. Bratchenko, O. O. Myakinin, D. N. Artemyev, D. V. Kornilin, S. V. Kozlov, and A. A. Moryatov, “Multimodal diagnosis and visualisation of oncologic pathologies,” Quantum Electronics 44(8), 726–731 (2014).

17. A. Bhowmik, R. Repaka, and S. C. Mishra, “Thermographic evaluation of early melanoma within the vascularized skin using combined non-Newtonian blood flow and bioheat models,” Computers in Biology and Medicine 53, 206–219 (2014).

18. A. L. Shada, L. T. Dengel, G. R. Petroni, M. E. Smolkin, S. Acton, and C. L. Slingluff, “Infrared thermography of cutaneous melanoma metastases,” Journal of Surgical Research 182(1), e9–e14 (2013).

19. K. Andrėkutė, G. Linkevičiūtė, R. Raišutis, S. Valiukevičienė, and J. Makštienė, “Automatic Differential Diagnosis of Melanocytic Skin Tumors Using Ultrasound Data,” Ultrasound in Medicine and Biology 42(12), 2834–2843 (2016).

20. O. O. Myakinin, V. P. Zakharov, I. A. Bratchenko, D. N. Artemyev, E. Y. Neretin, and S. V. Kozlov, “Dermoscopy analysis of RGB-images based on comparative features,” Proceedings of SPIE 9599, 95992B (2015).

21. J. T. Tou, R. C. Gonzalez, Pattern Recognition Principles, 2nd edition, Addison-Wesley Pub. Co. (1977).

22. R. C. Gonzalez, R. E. Woods, Digital image processing, 3rd edition, Pearson (2007).

23. K. V. Vorontsov, “Support vector machines lectures,” Institution of Russian Academy of Sciences. Dorodnicyn Computing Centre of RAS (2007) [in Russian].

© 2014-2020 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+