Optical methods of silicon nanoparticle diagnostics for applications in biomedicine

Alida F. Alykova (Login required)
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russian Federation

Valery G. Yakunin
Lomonosov Moscow State University, Russian Federation

Victor Yu. Timoshenko
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russian Federation
Lomonosov Moscow State University, Russian Federation
P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russian Federation

Irina N. Zavestovskaya
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russian Federation
P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russian Federation


Paper #3325 received 24 Apr 2019; revised manuscript received 4 Jun 2019; accepted for publication 4 Jun 2019; published online 29 Jun 2019.

DOI: 10.18287/JBPE19.05.020304

Abstract

The method of Raman scattering spectroscopy was used to study various silicon nanostructures (nanowires, mesoporous nanoparticles, crystalline and laser-ablated nanoparticles) dispersed in aqueous medium. The obtained results indicate different dissolution rate for silicon nanoparticles of different sizes and morphology in water that can be used for their potential biomedical applications.

Keywords

silicon nanocrystals; nanowires; porous silicon; nanocrystalline silicon; laser ablated nanoparticles; Raman scattering; biodegradation

Full Text:

PDF

References


1. A. A. Ischenko, G. V. Fetisov, and L. A. Aslanov (eds.), Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control, CRC Press, Taylor& Francis Group, Boca Raton, London, New York (2015).

2. А. V. Kabashin, V. Y. Timoshenko, “What theranostic applications could ultrapure laser-synthesized Si nanoparticles have in cancer?” Nanomedicine 11(17), 2247–2250 (2016). Crossref

3. L. A. Osminkina, V. Y. Timoshenko, “Porous Silicon as a Sensitizer for Biomedical Applications: Mini-review,” Open Material Sciences 3(1), 39–48 (2016). Crossref

4. L. А. Osminkina, A. A. Kudryavtsev, S. V. Zinoviev, A. P. Sviridov, Y. V. Kargina, K. P. Tamarov, V. N. Nikiforov, А. V. Ivanov, A. N. Vasiliev, and V. Y. Timoshenko, “Silicon nanoparticles as amplifiers of ultrasonic action for sonodynamic therapy,” Bulletin of experimental biology and medicine 161(2), 296–299 (2016). Crossref

5. A. P. Sviridov, L. A. Osminkina, A. L. Nikolaev, A. A. Kudryavtsev, A. N. Vasiliev, and V. Y. Timoshenko, “Lowering of the cavitation threshold in aqueous suspensions of porous silicon nanoparticles for sonodynamic therapy applications,” Applied Physics Letters 107(12), 123107 (2015). Crossref

6. M. B. Gongalsky, Y. V. Kargina, L. A. Osminkina, A. M. Perepukhov, M. V. Gulyaev, A. N. Vasiliev, Y. A. Pirogov, A. V. Maximychev, and V. Y. Timoshenko, “Porous silicon nanoparticles as biocompatible contrast agents for magnetic resonance imaging,” Applied Physics Letters 107(23), 233702 (2015). Crossref

7. L. A. Osminkina, A. L. Nikolaev, A. P. Sviridov, N. V. Andronova, K. P. Tamarov, M. B. Gongalsky, A. A. Kudryavtsev, H. M. Treshalina, and V. Y. Timoshenko, “Porous silicon nanoparticles as efficient sensitizers for sonodynamic therapy of cancer,” Microporous & Mesoporous Materials 210, 169–175 (2015). Crossref

8. S. P. Rodichkina, L. A. Osminkina, M. Isaiev, A. V. Pavlikov, A. V. Zoteev, V. A. Georgobiani, K. A. Gonchar, A. N. Vasiliev, and V. Y. Timoshenko, “Raman diagnostics of photoinduced heating of silicon nanowires prepared by metal-assisted chemical etching,” Applied Physics B 121(3), 337–344 (2015). Crossref

9. E. Tolstik, L. A. Osminkina, C. Matthäus, M. Burkhardt, K. E. Tsurikov, U. A. Natashina, V. Y. Timoshenko, R. Heintzmann, J. Popp, and V. Sivakov, “Studies of silicon nanoparticles uptake and biodegradation in cancer cells by Raman spectroscopy,” Nanomedicine: Nanotechnology, Biology & Medicine 12(7), 1931–1940 (2016). Crossref

10. M. B. Gongalsky, L. A. Osminkina, A. Pereira, A. A. Manankov, A. A. Fedorenko, A. N. Vasiliev, V. V.Soloviev, A. A. Kudryavtsev, M. Sentis, A. V. Kabashin, and V. Y. Timoshenko, “Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging,” Scientific Reports 6(1), 24732 (2016). Crossref

11. А. Kharin, O. Syshchyk, A. Geloen, S. Alekseev, A. Rogov, V. Lysenko, and V. Timoshenko, “Carbon fluoroxide nanoparticles as fluorescent labels and sonosensitizers for theranostic applications,” Science and Technology of Advanced Materials 16(4), 044601 (2015). Crossref

12. H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Communications 39(5), 625–629 (1981). Crossref

13. N. E. Maslova, A. A. Antonovsky, D. M. Zhigunov, V. Y. Timoshenko, V. N. Glebov, and V. N. Seminogov, “Raman studies of silicon eanocrystals embedded in silicon suboxide layers,” Semiconductors 44(8), 1040–1043 (2010). Crossref

14. A. F. Alykova, I. N. Zavestovskaya, V. G. Yakunin, and V. Y. Timoshenko, “Raman diagnostics of silicon nanocrystals dissolution in aqueous medium,” Journal of Physics: Conference Series 945, 012002 (2018). Crossref






© 2014-2019 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+