Optical Trap Combined with Raman Spectroscopy to Probe Red Blood Cell Behaviour in Certain Intravenous Fluids

Jijo Lukose
Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India

Ganesh Mohan
Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India

Mithun N
Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India

Shamee Shastry
Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India

Santhosh C (Login required)
Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India


Paper #3338 received 6 Nov 2019; revised manuscript received 12 Dec 2019; accepted for publication 20 Dec 2019; published online 31 Dec 2019.

DOI: 10.18287/JBPE19.05.040302

Abstract

Systematic studies on a live, individual human red blood cell without any chemical fixation can be realized with the aid of optical tweezers. In the present work, the behavior of human red blood cell in dextrose containing intravenous fluids and blood plasma were investigated and compared using a home-made near-IR Laser Tweezers Raman spectrometer. Significant spectral variations in Raman signatures exist between the RBCs in plasma and dextrose containing intravenous fluids, which mainly comprise of the hemoglobin oxygenation-deoxygenation transition as well as the heme aggregation markers.

Keywords

Raman spectroscopy; Optical Tweezers; Red Blood Cells; Intravenous fluids

Full Text:

PDF

References


1. R. Smith, K. L. Wright, and L. Ashton, “Raman Spectroscopy: An evolving technique for live cell studies,” Analyst 141(12), 3590–3600 (2016).

2. P. Strobbia, R. Odion, and T. Vo-Dinh, “Spectroscopic Chemical Sensing and Imaging: From Plants to Animals and Humans,” Chemosensors 6(1), 11 (2018).

3. H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nature protocols 11(4), 664–687 (2016).

4. Y. Kumamoto, Y. Harada, T. Takamatsu, and H. Tanaka, “Label-free Molecular Imaging and Analysis by Raman Spectroscopy,” Acta histochemica et cytochemica 51(3), 101–110 (2018).

5. E. Brauchle, K. Schenke-Layland, “Raman spectroscopy in biomedicine – non-invasive in vitro analysis of cells and extracellular matrix components in tissues,” Biotechnology journal 8(3), 288–297 (2013).

6. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Optics letters 11(5), 288 (1986).

7. A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517 (1987).

8. A. Ashkin, J. M Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769 (1987).

9. C. Xie, C. Goodman, M. A. Dinno, and Y.-Q. Li, “Real-time Raman spectroscopy of optically trapped living cells and organelles,” Optics Express 12 (25), 6208 (2004).

10. C. Xie, D. Chen, and Y.-q. Li, “Raman sorting and identification of single living micro-organisms with optical tweezers,” Optics Letters 30(14), 1800 (2005).

11. Y. M, K. Chawla, A. Bankapur, M. Acharya, J. S. D’Souza, and S. Chidangil, “A micro-Raman and chemometric study of urinary tract infection-causing bacterial pathogens in mixed cultures,” Analytical and Bioanalytical Chemistry 411(14), 3165–3177 (2019).

12. R. Liu, Z. Mao, D. L. Matthews, C.-S. Li, J. W. Chan, and N. Satake, “Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: Application for sickle cell disease,” Experimental hematology 41(7), 656–661.e1 (2013).

13. A. C. De Luca, G. Rusciano, R. Ciancia, V. Martinelli, G. Pesce, B. Rotoli, L. Selvaggi, and A. Sasso, “Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers,” Optics Express 16(11), 7943 (2008).

14. S. Barkur, D. Mathur, and S. Chidangil, “A laser Raman tweezers study of eryptosis,” Journal of Raman Spectroscopy 49(7), 1155–1164 (2018).

15. A. Bankapur, S. Barkur, S. Chidangil, and D. Mathur, “A micro-raman study of live, single Red Blood Cells (RBCs) treated with AgNO3 nanoparticles,” PLoS One 9(7), e103493 (2014).

16. G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders,” Sensors 8, 7818 (2008)

17. R. Dasgupta, R. S. Verma, S. Ahlawat, A. Uppal, and P. K. Gupta, “Studies on erythrocytes in malaria infected blood sample with Raman optical tweezers,” Journal of Biomedical Optics 16(7), 077009 (2011).

18. S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman Study of Mechanically Induced Oxygenation State Transition of Red Blood Cells Using Optical Tweezers,” Biophysical Journal 96(1), 209–216 (2009).

19. D. Lin, Z. Zheng, Q. Wang, H. Huang, Z. Huang, Y. Yu, S. Qiu, C. Wen, M. Cheng, and S. Feng, “Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing,” Optics Express 24 (21), 24750 (2016).

20. J. Lin, L. Shao, S. Qiu, X. Huang, M. Liu, A. Zheng, D. Lin, Y. Xu, Z. Li,Y. Lin, R. Chen, and S. Feng, “Application of a near-infrared laser tweezers Raman spectroscopy system for label-free analysis and differentiation of diabetic red blood cells,” Biomedical Optics Express 9(3), 984 (2018).

21. Intravenous Fluid Therapy: Intravenous Fluid Therapy in Adults in Hospital [Internet], NICE Clinical Guidelines № 174, London, Royal College of Physicians (UK), 2013.

22. S. Pandya, Practical guidelines on fluid therapy, 2nd edition, Bhalani (2005).

23. K. J. Chin, J. Macachor, K. C. Ong, and B. C. Ong, “A comparison of 5% dextrose in 0.9% normal saline versus non-dextrose-containing crystalloids as the initial intravenous replacement fluid in elective surgery,” Anaesthesia and intensive care 34(5), 613 (2006).

24. B. R. Wood, D. McNaughton, “Micro-Raman characterization of high- and low- spin heme moieties within single living erythrocytes,” Biopolymers 67(4-5), 259–262 (2002).

25. B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1539(1-2), 58 (2001).

26. C. G. Atkins, H. G. Schulze, D. Chen, D. V. Devine, M. W. Blades, and R. F. B. Turner, “Using Raman spectroscopy to assess hemoglobin oxygenation in red blood cell concentrate: an objective proxy for morphological index to gauge the quality of stored blood ?” Analyst 142(12), 2199–2210 (2017).

27. B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Analytical and bioanalytical chemistry 387(5), 1691 (2007).

28. J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near‐infrared laser tweezers Raman spectroscopy,” Journal of Raman Spectroscopy 36(3), 257 (2005).

29. J. Lukose, N. Mithun, M. Priyanka, G. Mohan, S. Shastry, and S. Chidangil, “Laser Raman tweezer spectroscopy to explore the bisphenol A-induced changes in human erythrocytes,” RSC Advances 9(28), 15933 (2019).

30. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” Journal of biomedical optics 10(1), 014005 (2005).

31. C. Uzoigwe, “The human erythrocyte has developed the biconcave disc shape to optimise the flow properties of the blood in the large vessels,” Medical hypotheses 67(5), 1159 (2006).

32. S. Barkur, J. Lukose, and S. Chidangil, “Probing Nanoparticle–Cell Interaction Using Micro-Raman Spectroscopy: Silver and Gold Nanoparticle-Induced Stress Effects on Optically Trapped Live Red Blood Cells,” ACS Omega 5(3), 1439 (2020).

33. J. Lukose, M. N, G. Mohan, S. Shastry, and S. Chidangil, “Normal saline-induced deoxygenation of red blood cells probed by optical tweezers combined with the micro-Raman technique,” RSC Advances 9(14), 7878 (2019).

34. J. Lukose, M. N, G. Mohan, S. Shastry, and S. Chidangil, “Optical tweezers combined with micro‐Raman investigation of alcohol‐induced changes on single, live red blood cells in blood plasma,” Journal of Raman Spectroscopy 50(10), 1367 (2019).






© 2014-2020 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+