Recent Trends in Optical Manipulation Inspired by Mesoscale Photonics and Diffraction Optics

Igor V. Minin (Login required)
Siberian State University of Geosystems and Technologies, Novosibirsk, Russia
Tomsk State University, Russia

Oleg V. Minin
Siberian State University of Geosystems and Technologies, Novosibirsk, Russia
Tomsk State University, Russia

Paper #3349 received 28 Jan 2020; revised manuscript received 24 Feb 2020; accepted for publication 27 Mar 2020; published online 20 Jun 2020.

DOI: 10.18287/JBPE20.06.020301


The spatial resolution of conventional optics, which is need for non-destructively trapping of microobjects, is limited by diffraction to nearly half the wavelength. Despite this limitation, the use of optical methods is one of the main directions in biological and biomedical researches, since only the use of optical methods has a minimal effect on living organisms. Quick progress in this field is based on a large extent on the development of new optical technologies and significant progress in the mesoscale photonics enabled the researches to obtain novel, previously unachievable information. Below we discussed some recent trends in optical manipulations on wavelength scale based on diffractive elements – mesoscale dielectric particles as a field localization object and classical diffractive optical elements with unusual properties.


mesoscale photonics; dielectric particle; optical force; photonic nanojet; photonic hook; particle manipulation; zone plate

Full Text:



1. K. Dholakia, T. Čižmár, “Shaping the future of manipulation,” Nature Photonics 5(6), 335–342 (2011).

2. D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Science & Applications 6(9), e17039 (2017).

3. P. Rodriguez-Sevilla, L. Labrador-Paez, D. Jaque, and P. Haro-Gonzalez, “Optical trapping for biosensing: materials and applications,” Journal of Materials Chemistry B 5(46), 9085–9101 (2017).

4. D. G. Kotsifaki, S. N. Chormaic, “Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects,” Nanophotonics 8(7), 1227–1245 (2019).

5. R. Agarwal, K. Ladavac, Y. Roichman, G. H. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Optics Express 13(22), 8906 (2005).

6. H. T. Li, D. J. Zhou, H. Browne, and D. Klenerman, “Evidence for Resonance Optical Trapping of Individual Fluorophore-Labeled Antibodies Using Single Molecule Fluorescence Spectroscopy,” Journal of the American Chemical Society 128(17), 5711–5717 (2006).

7. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annual Review of Biochemistry 77(1), 205–208 (2008).

8. F. M. Fazal, S. M. Block, “Optical tweezers study life under tension,” Nature Photonics 5(6), 318–321 (2011).

9. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Optics Letters 11(5), 288 (1986).

10. T. Shoji, Y. Tsuboi, “Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping,” The Journal of Physical Chemistry Letters 5(17), 2957–2967 (2014).

11. E. H. K. Stelzer, “Beyond the diffraction limit?” Nature 417(6891), 806–807 (2002).

12. A. Heifetz, S. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” Journal of Computational and Theoretical Nanoscience 6(9), 1979–1992 (2009).

13. B. Luk'yanchuk, R. Paniagua-Domínguez, I. V. Minin, O. V. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow,” Optical Materials Express 7(6), 1820–1847 (2017).

14. Z. Wang, B. Luk’yanchuk, L. Yue, R. Paniagua-Domínguez, B. Yan, J. Monks, O. V. Minin, I. V. Minin, S. Huang, and A. Fedyanin, “High order Fano resonances and giant magnetic fields in dielectric microspheres,” Scientific Reports 9(1), 20293 (2019).

15. B. Wang, L. Shen, and S. He, “Superlens Formed by a One-dimensional Dielectric Photonic Crystal,” Journal of the Optical Society of America B 25(3), 391–395 (2008).

16. I. V. Minin, O. V. Minin, Y. R. Triandaphilov, and V. V. Kotlyar, “Focusing properties of two types of diffractive photonic crystal lens,” Optical Memory and Neural Networks 17(3), 244–248 (2008).

17. F. Gaufillet, E. Akmansoy, “Design and experimental evidence of a flat graded-index photonic crystal lens,” Journal of Applied Physics 114(8), 083105 (2013).

18. I. V. Minin, O. V. Minin, N. Gagnon, and A. Petosa, “FDTD analysis of a flat diffractive optics with sub-Reyleigh limit resolution in MM/THz waveband,” Proceeding of the Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics, September 18–22, Shanghai, China (2006).

19. I. V. Minin, O. V. Minin, “3D diffractive lenses to overcome the 3D Abbe subwavelength diffraction,” Chinese Optics Letters 12(6), 060014 (2014).

20. Y. Zhu, S. Zhou, Z. Wang, Y. Yu, W. Yuan, and W. Liu, “Investigation on Super-Resolution Focusing Performance of a TE-Polarized Nanoslit-Based Two-Dimensional Lens,” Nanomaterials 10(1), 3 (2020).

21. K. R. Chen, “Focusing of light beyond the diffraction limit of half the wavelength,” Optics Letters 35(22), 3763 (2010).

22. S. Ishii, A. V. Kildishev, V. M. Shalaev, and V. P. Drachev, “Controlling the wave focal structure of metallic nanoslit lenses with liquid crystals,” Laser Physics Letters 8(11), 828–832 (2011).

23. R. G. Mote, O. V. Minin, and I. V. Minin, “Focusing behavior of 2-dimensional plasmonic conical zone plate,” Optical and Quantum Electronics 49(8), 271 (2017).

24. L. Jin, Q. Y. Zhu, Y. Q. Fu, and W. X. Yu, “Flat lenses constructed by graded negative index-based photonic crystals with tuned configurations,” Chinese Physics B 22(10), 104101 (2013).

25. Y. H. Li, Y. Q. Fu, O. V. Minin, and I. V. Minin, “Ultrasharp nanofocusing of graded index photonic crystalbased lenses perforated with optimized single defect,” Optical Material Express, 6(8), 2628–2636 (2016).

26. Y. Cao, Z. Liu, O. V. Minin, and I. V. Minin, “Deep subwavelength-scale light focusing and confinement in nanohole-structured mesoscale dielectric spheres,” Nanomaterials 9(2), 186 (2019).

27. T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Applied Physics A 99(1), 39–46 (2010).

28. J. R. Ong, H. S. Chu, V. H. Chen, A. Y. Zhu, and P. Genevet, “Freestanding dielectric nanohole array metasurface for mid-infrared wavelength applications,” Optics Letters 42(13), 2639–2642 (2017).

29. Q. Wang, W. Han, Y. Wang, M. Lu, and L. Dong, “Tape nanolithography: a rapid and simple method for fabricating flexible, wearable nanophotonic devices,” Microsystems & Nanoengineering 4(1), 31 (2018).

30. I. V. Minin, O. V. Minin, Y. Cao, Z. Liu, Y. Geints, and A. Karabchevsky, “Optical vacuum cleaner by optomechanical manipulation of nanoparticles using nanostructured mesoscale dielectric cuboid,” Scientific Reports 9(1), 12748 (2019)

31. C.-S. Wang, Y. Otani, “Removal of nanoparticles from gas streams by fibrous filters: a review,” Industrial & Engineering Chemistry Research 52(1), 5–17 (2013).

32. D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab on a Chip 11(6), 995 (2011).

33. I. V. Minin, O. V. Minin, Diffractive Optics and Nanophotonics: Resolution Below the Diffraction Limit, Springer, Cham (2016).

34. L. Yue, O. V. Minin, Z. Wang, J. Monks, A. Shalin, and I. V. Minin, “Photonic hook: a new curved light beam,” Optics Letters 43(4), 771–774 (2018).

35. A. Ang, A. Karabchevsky, I. V. Minin, O. V. Minin, S. Sukhov, and A. Shalin, “Photonic Hook based optomechanical nanoparticle manipulator,” Scientific Reports 8(1), 2029 (2018).

36. I. V. Minin, O. V. Minin, G. Katyba, N. Chernomyrdin, V. Kurlov, K. Zaytsev, L. Yue, Z. Wang, and D. Christodoulides, “Experimental observation of a photonic hook,” Applied Physics Letters 114(3), 031105 (2019).

37. K. Dholakia, G. Bruce, “Optical hooks,” Nature Photonics 13(4), 229–230 (2019).

38. I. V. Minin, O. V. Minin, D. S. Ponomarev, and I. A. Glinskiy, “Photonic hook plasmons: a new curved surface wave,” Annalen der Physik 530(12), 1800359 (2018).

39. C. Rubio, D. Tarrazó-Serrano, O. V. Minin, A. Uris, and I. V. Minin, “Acoustical hooks: a new subwavelength self-bending beam,” Results in Physics 16, 102921 (2020)

40. E. Xing, H. Gao, J. Rong, S. Khew, H. Liu, C. Tong, and M. Hong, “Dynamically tunable multi-lobe laser generation via multifocal curved beam,” Optics Express 26(23), 30944–30951 (2018).

41. J. Yang, P. Twardowski, P. Gérard, Y. Duo, J. Fontaine, and S. Lecler, “Ultra-narrow photonic nanojets through a glass cuboid embedded in a dielectric cylinder,” Optics Express 26(4), 3723–3731 (2018).

42. Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Optics Express 27(2), 1310–1325 (2019).

43. I. V. Minin, O. V. Minin, “Subwavelength self-bending structured light beams,” Proceeding of the Fourth Russian-Belarusian Workshop “Carbon nanostructures and their electromagnetic properties”, April 21–24, Tomsk, 52–57 (2019).

44. I. V. Minin, O. V. Minin, “Dielectric particle-based strategy to design a new self-bending subwavelength structured light beams,” Proceedings of the 14th International Forum on Strategic Technology (IFOST 2019), October 14–17, TPU Publishing House, Tomsk (2019).

45. G. Gu, L. Shao, J. Song, J. Qu, K. Zheng, X. Shen, Z. Peng, J. Hu, X. Chen, M. Chen, and Q. Wu, “Photonic hooks from Janus microcylinders,” Optic Express 27(26), 37771–37780 (2019).

46. X. Shen, G. Gu, L. Shao, Z. Peng, J. Hu, S. Bandyopadhyay, Y. Liu, J. Jiang, and M. Chen, “Twin photonic hook generated by twin-ellipse microcylinder,” IEEE Photonics Journal 12(3), 1–9 (2020).

47. X. Ma, Y. Guo, M. Pu, J.J. Jin, P. Gao, X. Li, and X. Luo, “Tunable Optical Hooks in the Visible Band Based on Ultra-Thin Metalenses,” Annalen der Physik 532(1), 1900396 (2019).

48. X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Optics Express 16(18), 13560–13568 (2008).

49. A. S. Ang, I. V. Minin, O. V. Minin, S. V. Sukhov, A. Shalin, and A. Karabchevsky, “Low-contrast photonic hook manipulator for cellular differentiation,” Proceeding of the the 9th International conference on Metamaterials, Photonic crystals and Plasmonics, June 24–July 1, Marseille, France (2018).

50. H. Wang, X. Wu, and D. Shen, “Trapping and manipulating nanoparticles in photonic nanojets,” Optics Letters 41(7), 1652 (2016).

51. I. V. Minin, O. V. Minin, V. Pacheсo-Peña, and M. Beruete, “Subwavelength, standing-wave optical trap based on photonic jets,” Quantum Electronics 46(6), 555–557 (2016).

52. V. Yannopapas, “Photonic nanojets as three-dimensional optical atom traps: a theoretical study,” Optics Communications 285(12), 2952–2955 (2012).

53. Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light: Science & Applications 5(12), e16176 (2016).

54. Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).

55. M. Padgett, R. Bowman, “Tweezers with a twist,” Nature Photonics 5(6), 343–348 (2011).

56. A. Ashkin, “Acceleration of trapping of particles by radiation pressure,” Physical Review Letters 24(4), 156–159 (1970).

57. W. G. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Dholakia, and H. Wang, “Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation,” Applied Physics Letters 85(23), 5784–5786 (2004).

58. A. Vijayakumar, C. Rosales-Guzmán, M. R. Rai, J. Rosen, O. V. Minin, I. V. Minin, and A. Forbes, “Generation of structured light by multilevel orbital angular momentum holograms,” Optics Express, 27(5), 5459 (2019).

59. B. Vinoth, A. Vijayakumar, M. Ratnam Rai, J. Rosen, C.-J. Cheng, O. V. Minin, and I. V. Minin, “Binary square axicon with chiral focusing properties for optical trapping,” Optical Engineering 59(4), 041204 (2019).

60. A. Vijayakumar, B. Vinoth, I. V. Minin, J. Rosen, O. V. Minin, and C.-J. Cheng, “Experimental demonstration of square Fresnel zone plate with chiral side lobes,” Applied Optics 56(13), F128–F133 (2017).

61. I. V. Minin, O. V. Minin, A. Petosa, and S. Thirakoune, “Improved zoning rule for designing square Fresnel zone plate lenses,” Microwave and Optical Technology Letters 49(2), 276–278 (2007).

62. I. V. Minin, O. V. Minin, N. Gagnon, and A. Petosa, “Investigation of the resolution of phase correcting Fresnel lenses with small values of F/D and subwavelength focus,” Computer optics 30, 65–68 (2006).

63. I. V. Minin, O. V. Minin, “Experimental verification 3D subwavelength resolution beyond the diffraction limit with zone plate in millimeter wave,” Microwave and Optical Technology Letters 56(10), 2436–2439 (2014).

64. I. V. Minin, O. V. Minin, E. Danilov, and G. Lbov, “Parameters optimization algorithm of a new type of diffraction optics elements,” Proceedings of 5th IEEE-Russia Conference MEMIA, December 13–15, Novosibirsk, Russia, 177–185 (2005).

65. A. Vijayakumar, M. R. Rai, J. Rosen, B. Vinoth, C.-J. Cheng, O. V. Minin, and I. V. Minin, “Diffractive optical elements with chiral-focusing properties for optical-trapping applications,” Chapter in Frontier Research and Innovation in Optoelectronics Technology and Industry, K. Habib and E. Lewis (eds.), Tailor and Francis, London, 461–465 (2019).

66. A. Rohrbach, E. H. K. Stelzer, “Optical trapping of dielectric particles in arbitrary fields,” Journal of the Optical Society of America A 18(4), 839–882 (2001).

67. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using Bessel light beam,” Optics Communications 197(4-6), 239–245 (2001).

68. J. Ng, Z. Lin, and C. T. Chan, “Theory of Optical Trapping by an Optical Vortex Beam,” Physical Review Letters 104(10), 103601 (2010).

69. J. Guan, J. Lin, Y. Ma, J. Tan, and P. Jin, “A subwavelength spot and a three-dimensional optical trap formed by a single planar element with azimuthal light,” Scientific Reports 7(1), 7380 (2017).

70. O. V. Minin, I. V.Minin, and N. Kharitoshin, “Microcubes Aided Photonic Jet Scalpel Tips for Potential Use in Ultraprecise Laser Surgery,” Proceeding of 2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON), October 28–30, Novosibirsk, Russia, 18–21 (2015).

71. X. Tang, Y. Zhang, W. Su, Y. Zhang, Z. Liu, X. Yang, J. Zhang, J, Yang, and L. Yuan, “Super-low-power optical trapping of a single nanoparticle,” Optics Letters 44(21), 5165 (2019).

72. A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A. M. Herkommer, H. Giessen, and J. Fick, “Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses,” ACS Photonics 7(1), 88–97 (2020).

73. R.S. Rodrigues Ribeiro, P. Dahal, A. Guerreiro, P. A. S. Jorge, and J. Viegas, “Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells,” Scientific Reports 7, 4485 (2017).

74. L. Ma, J. Guan, Y. Wang, C. Chen, J. Zhang, J. Lin, J. Tan, and P. Jin. “Diffraction-limited axial double foci and optical traps generated by optimization-free planar lens,” Nanophotonics 9(4), 841–853 (2020).

© 2014-2020 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+