Study of Laser Radiation Effect on the Cornea of the Eye by Speckle Interferometry

Victoria A. Fedulova
Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences, Moscow, Russian Federation

Aleksei V. Yuzhakov
Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences, Moscow, Russian Federation

Olga I. Baum (Login required)
Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences, Moscow, Russian Federation




DOI: 10.18287/JBPE20.06.010302

Abstract

The existing techniques of laser vision correction – one of the most widespread operations – are based presently on a surgical intervention in cornea tissue. Our science team is engaged in studying of in essence new type of correction based on a modification of structure and the field of mechanical tension of a cornea. In this work, the possibility to use of a speckle interferometry method as a basis for the tracking system of cornea structural changes at thermal influence of a nondestructive laser radiation is considered. Also for a cornea, the polymeric phantom was picked up.

Keywords

cornea; speckle interferometry method; polymeric phantom

Full Text:

PDF

References


1. B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).

2. K. E. Johnson, Histology and cell biology, Williams & Wilkins, Baltimore, Maryland (1991).

3. H. S. Dua, L. A. Faraj, D. G. Said, T. Gray, and J. Lowe, “Human Corneal Anatomy Redefined,” Ophthalmology 120(9), 1778–1785 (2013).

4. S. Taneri, J. D. Zieske, and D. T. Azar, “Evolution, techniques, clinical outcomes, and pathophysiology of LASEK: review of the literature,” Survey of Ophthalmology 49(6), 576-602 (2004).

5. W. Sekundo, J. Gertnere, T. Bertelmann, and I. Solomatin, “One-year refractive results, contrast sensitivity, high-order aberrations and complications after myopic small-incision lenticule extraction (ReLExSMILE),” Graefe’s Archive for Clinical and Experimental Ophthalmology 252(5), 837–843 (2014).

6. E. N. Sobol’, O. I. Baum, A. V. Bol’shunov, V. I. Siplivy, N. Y. Ignat’eva, O. L. Zakharkina, V. V. Lunin, A. I. Omelchenko, V. A. Kamensky, and A. V. Mjakov, “Eye Tissue Structure and Refraction Variations upon Nondestructive Laser Action,” Laser Physics 16(5), 735–740 (2006).

7. A. Bolshunov, E. Sobol, S. Avetisov, O. Baum, V. Siplivy, and A. Omelchenko, “A new method of the eye refraction correction under nonablative laser radiation,” ActaOphthalmologica 89 (2011).

8. O. I. Baum, A. V. Yuzhakov, A. V. Bolshunov, V. I. Siplivyi, and O. V. Khomchik, “New laser technologies in ophthalmology for normalisation of intraocular pressure and correction of refraction,” Quantum electronics 47(9), 860 (2017).

9. O. Baum, A. Yuzhakov, A. Omelchenko, A. Bolshunov, V. Siplivy, and E. Sobol, “Laser-assisted correction of eye cornea refraction with ring-shaped laser beam,” Proceedings of SPIE 104170, 104170H (2017).

10. O. I. Baum, A. I. Omelchenko, E. M. Kasyanenko, R. V. Skidanov, and N. L. Kazanskij, “New biophotonics methods for improving efficiency and safety of laser modification of the fibrous tunic of the eye,” Vestnik oftalmologii 134(5), 4–14 (2018).

11. O. I. Baum, A. I. Omel'chenko, E. M. Kasianenko, R. V. Skidanov, N. L. Kazanskiy, A. V. Bolshunov, S. E. Avetisov, and V. Y. Panchenko, “Control of laser-beam spatial distribution for correcting the shape and refraction of eye cornea,” Quantum Electronics 50(1), 87 (2020).

12. O. I. Baum, V. Y. Zaitsev, A. V. Yuzhakov, A. P. Sviridov, M. L. Novikova, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, and E. N. Sobol, “Interplay of temperature, thermal‐stresses and strains in laser‐assisted modification of collagenous tissues: Speckle‐contrast and OCT‐based studies,” Journal of Biophotonics 13(1), e201900199 (2019).

13. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. Vitkin, A. I. Omelchenko, O. I. Baum, D. V. Shabanov, A. A. Sovetsky, and E. N. Sobol, “Multiparameter thermo-mechanical OCT-based characterization of laser-induced cornea reshaping,” Proceedings of SPIE 10067, 100670V (2017).

14. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” Journal of biophotonics 12 (3), e201800250 (2019).

15. V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Physics Letters 1(6), 065601 (2019).

16. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. Vitkin, A. I. Omelchenko, O. I. Baum, D. V. Shabanov, A. A. Sovetsky, and E. N. Sobol, “Multiparameter thermo-mechanical OCT-based characterization of laser-induced cornea reshaping,” Proceedings of SPIE 10067, 100670V (2017).

17. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, O. I. Baum, A. Vitkin, and E. N. Sobol, “Optical coherence elastography assesses tissue modifications in laser reshaping of cornea and cartilages,” Proceedings of SPIE 10496, 104960C (2018).

18. D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” Journal of Biomedical Optics 18(6), 066018 (2013).

19. D. A. Boas, A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” Journal of Biomedical Optics 15(1), 011109 (2010).

20. A. Y. Neganova, D. D. Postnov, J. C. B. Jacobsen, and O. Sosnovtseva, “Laser speckle analysis of retinal vascular dynamics,” Biomedical Optics Express 7(4), 1375–1384 (2016).

21. D. D. Postnov, N.-H. Holstein-Rathlou, and O. Sosnovtseva, “Laser speckle imaging of intra organ drug distribution,” Biomedical Optics Express 6(12), 5055–5062 (2015).

22. A. S. Abdurashitov, V. V. Lychagov, O. A. Sindeeva, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Histogram analysis of laser speckle contrast image for cerebral blood flow monitoring,” Frontiers of Optoelectronics 8(2), 187–194 (2015).

23. D. D. Postnov, O. Sosnovtseva, and V. V. Tuchin, “Improved detectability of microcirculatory dynamics by laser speckle flowmetry,” Journal of Biophotonics 8(10), 790-794 (2015).

24. D. D. Postnov, V. V. Tuchin, and O. Sosnovtseva, “Estimation of vessel diameter and blood flow dynamics from laser speckle images,” Biomed.Optics Express 7(7), 2759–2768 (2016).

25. A. Abdurashitov, O. Bragina, O. Sindeeva, S. Sindeev, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Off-axis holographic laser speckle contrast imaging of blood vessels in tissues,” Journal of Biomedical Optics 22(9), 091514 (2017).

26. Z. Hajjarian, H. T. Nia, S. Ahn, A. J. Grodzinsky, R. K. Jain, and S. K. Nadkarni, “Laser speckle rheology for evaluating the viscoelastic properties of hydrogel scaffolds,” Scientific Reports 6(1), 37949 (2016).

27. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” Journal of the Optical Society of America A 25(1), 9–15 (2008).






© 2014-2020 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+