Raman Spectroscopy of Hemoglobin and Dielectrophoresis of Erythrocytes in the Diagnosis of the Resistant Arterial Hypertension

Margarita V. Kruchinina orcid (Login required)
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Andrey A. Gromov
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Vladimir N. Kruchinin orcid
Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk, Russia

Vladimir A. Volodin
Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk, Russia

Vladimir M. Generalov
Federal Budgetary Research Institution “State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being, Novosibirsk Region, Koltsovo, Russia


Paper #3352 received 22 Feb 2020; revised manuscript received 8 Mar 2020; accepted for publication 27 Mar 2020; published online 21 Jun 2020.

DOI: 10.18287/JBPE20.06.020302

Abstract

The research aim is to study the associations of changes in the content of hemoglobin complexes by the Raman spectroscopy with electrical and viscoelastic parameters of erythrocytes (using the dielectrophoresis method) among patients with arterial hypertension (AH) (including resistant AH), to evaluate the possibility of using these parameters for diagnostic purposes. Fifty males (54 ± 6 years) with stage 2 of AH have been examined, 24 of them have showed resistant AH. We have determined a significant decrease in the level of hemoglobin-ligand complexes, Hb-NO (II) complexes in patients with resistant AH compared to those among patients with controlled AH and among healthy patients (p < 0.001 – 0.05). We have found correlations between intensities of the most important signals of hemoglobin Raman spectra (1325, 1350, 1550, 1580, 1660, 1668 cm–1) and electric and viscoelastic parameters of erythrocytes (amplitude of erythrocytes deformation, summarized indicators of viscosity and rigidity, the magnitude of the dipole moment, polarizability at the frequency 106 Hz, electrical conductivity, index of destruction), the intensity of which had been the biggest one for resistant AH. It has been shown that the combined use of two methods (Raman spectroscopy of hemoglobin and electrical and the studies of erythrocytes by the dielectrophoresis method) allowed to increase the diagnostic accuracy to detect the resistant arterial hypertension up to 88%, sensitivity up to 84.6%, specificity up to 91.7% compared to the data of the combined clinical and instrumental methods of research. The capability of this combination approach exceeds the capabilities of the methods separately.

Keywords

resistant arterial hypertension; diagnostics; Raman spectroscopy; dielectrophoresis; erythrocytes; hemoglobin

Full Text:

PDF

References


1. S. A. Boitsov, R. G. Oganov, “Experience in the prevention of cardiovascular diseases in the country,” Therapeutic archive 84(9), 4–10 (2012) [in Russian].

2. A. N. Britov, M. M. Bystrova, “Refractory hypertension – modern approaches to diagnostics and treatment,” Rational pharmacotherapy in cardiology 6(2), 206–211 (2010) [in Russian].

3. V. A. Dmitriev, E. V. Oschepkova, V. N. Titov, A. N. Rogoza, T. V. Balakhonova, O. A. Pogorelova, V. P. Masenko, and D. M. Ataullakhanova, “C-reactive protein and interleikin-6 in damage of target-organs of patients at early stages of hypertension,” Kardiologicheskii vestnik 2(2), 45–49 (2007) [in Russian].

4. E. V. Oschepkova, V. A. Dmitriev, and V. N. Titov, “Non-specific inflammation rates in hypertensive patients,” Therapeutic archive 12, 62–67 (2007) [in Russian].

5. S. Spina, C. Lei, R. Pinciroli, and L. Berra, “Hemolysis and kidney injury in cardiac surgery: The protective role of nitric oxide therapy,” Seminars in Nephrology 39(5), 484–495 (2019).

6. J. T. Alexander, A. M. El-Ali, J. L. Newman, S. Karatela, B. L. Predmore, D. J. Lefer, R. L. Sutliff, and J. D. Roback, “Red blood cells stored for increasing periods produce progressive impairments in nitric oxide–mediated vasodilation,” Transfusion 53, 2619–2628 (2013).

7. J. Carroll, M. Raththagala, W. Subasinghe, S. Baguzis, T. D. A. Oblak, P. Root, and D. Spence, “An altered oxidant defense system in red blood cells affects their ability to release nitric oxidestimulating ATP,” Molecular BioSystems 2(6–7), 305–311 (2006).

8. R. S. Sprague, A. H. Stephenson, E. A. Bowles, M. S. Stumpf, and A. J. Lonigro, “Reduced expression of Gi in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release,” Diabetes 55(12), 3588–3593 (2006).

9. C. C. Helms, M. T. Gladwin, and D. B. Kim-Shapiro, “Erythrocytes and Vascular Function: Oxygen and Nitric Oxide,” Frontiers in Physiology 9, 1–125 (2018).

10. “Working Group for the Treatment of Arterial Hypertension of the European Society of Hypertension. Recommendations for the treatment of arterial hypertension. ESH/ESC 2013,” Russian cardiologic journal 1(105), 7–94 (2014) [in Russian].

11. S. T. Halpin, D. M. Spence, “Direct plate-reader measurement of nitric oxide released from hypoxic erythrocytes flowing through a microfluidic device,” Analytical Chemistry 82, 7492–7497 (2010).

12. M. V. Kruchinina, A. A. Gromov, Ya. Sh. Shvartz, A. V. Rabko, V. A. Baum, V. M. Generalov, V. N. Kruchinin, S. V. Rykhlitskii, and V. A. Volodin, “Resistant arterial hypertension: some aspects of pathogenesis,” Atherosclerosis 11(3), 5–14 (2015) [in Russian].

13. Ya. Sh. Shvartz, M. V. Kruchinina, M. M. Timofeeva, M. I. Rudina, O. M. Dolganova, A. A. Gromov, V. A. Baum, and A. V. Rabko, “Determining the ability of erythrocyte to generate nitric oxide in patients with cardiovascular diseases,” International Journal of Applied and Fundamental Research 4(2), 386–391 (2016) [in Russian].

14. M. V. Kruchinina, Ya. Sh. Shvartz, A. A. Gromov, V. N. Kruchinin, V. A. Volodin, and S. V. Rykhlitskii, “Raman-spectroscopy of hemoglobine in diagnostics of resistant arterial hypertension,” Atherosclerosis 12(4), 22–29 (2016) [in Russian].

15. M. V. Kruchinina, A. A. Gromov, A. V. Rabko, V. A. Baum, V. M. Generalov, V. N. Kruchinin, S. V. Rykhlitskii, and V. A. Volodin, “Are there any differences in the optical parameters of blood associated with the degree of arterial hypertension?” Atherosclerosis 10(1), 22–31 (2014) [in Russian].

16. S. Uskokovic-Markovic, M. Jelikic-Stankov, I. Holclajtner-Antunovic, and P. Durdevic, “Raman spectroscopy as a new biochemical diagnostic tool,” Journal of Medical Biochemistry 32(2), 96–103 (2013).

17. G. W. Auner, S. K. Koya, C. Huang, B. Broadbent, M. Trexler, Z. Auner, A. Elias, K. C. Mehne, and M. A. Brusatori, “Applications of Raman spectroscopy in cancer diagnosis,” Cancer and Metastasis Reviews 37(4), 691–717 (2018).

18. V. M. Generalov, M. V. Kruchinina, A. G. Durymanov, A. A. Medvedev, A. S. Safatov, A. N. Sergeev, G. A. Buryak, S. A. Kurilovich, and A. A. Gromov, Dielectrophoresis in the diagnosis of infectious and non-infectious diseases, V. M. Generalov, M. V. Kruchinina (eds.), CERIS, Novosibirsk (2011) [in Russian]. ISBN 978-5-7007-0256-4.

19. V. M. Generalov, M. V. Kruchinina, A. A. Gromov, and G. V. Shuvalov, Dielectrophoresis in biology and medicine, Publishing office of NGTU, Novosibirsk (2017) [in Russian]. ISBN 978-5-7782-3485-7.

20. M. V. Kruchinina, S. A. Kurilovich, M. I. Voevoda, A. A. Gromov, V. M. Generalov, A. S. Safatov, G. A. Buryak, and K. V. Generalov, “Associations of erythrocyte parameters with viral loadin patients with chronic viral hepatitis C,” Vestnik NGU 13(2), 5–17 (2015) [in Russian].

21. M. V. Kruchinina, S. А. Kurilovich, А. А. Gromov, V. М. Generalov, and V. N. Kruchinin, “Peculiarities of erythrocytic parameters in patients with nonalcoholic steatohepatitis,” Journal of Analytical Sciences, Methods and Instrumentation 6(1), 6–14 (2016).

22. M. V. Kruchinina, A. V. Starikov, A. A. Gromov, and V. M. Generalov, “Interaction of electrical and viscoelastic parameters with biochemistry parameters in patients with various stages of colorectal cancer,” Therapy 3(7), 40–47 (2016) [in Russian].

23. M. V. Kruchinina, A. A. Gromov, M. V. Parulikova, M. G. Golovin, V. A. Baum, V. M. Generalov, K. V. Generalov, and V. N. Kruchinin, “Diagnostic possibilities for rheological disorders in patients with type 2 diabetes,” Modern problems of science and education 5 (2017).

24. O. V. Rodnenkov, O. G. Luneva, N. A. Ulyanova, G. V. Maksimov, A. B.Rubin, S. N. Orlov, and E. I. Chazov, “Erythrocyte membrane fluidity and haemoglobin haemoporphyrin conformation: features revealed in patients with heart failure,” Pathophysiology 11(4), 209–213 (2005).

25. I. E. Chazova, N. M. Danilov, and A. Yu. Litvin, Refractory arterial hypertension: Monography, Moscow, Atmosphere (2014) [in Russian].

26. A. S. Said, S. C. Rogers, and A. Doctor, “Physiologic Impact of Circulating RBC Microparticles upon Blood-Vascular Interactions,” Frontiers in Physiology 8, 1120 (2017).

27. G. J. Bosman, “The involvement of erythrocyte metabolism in organismal homeostasis in health and disease,” PROTEOMICS - Clinical Applications 10(8) 774–777 (2016).

28. E. B. Menshikova, V. Z. Lankin, N. K. Zenkov, I. A. Bondar, N. F. Krugovyh, and V. A. Trufakin, Oxidative stress. Prooxidants and antioxidants, Мoscow, Slovo (2006) [in Russian].

29. V. V. Novitskij, N. V. Ryazantseva, and E. A. Stepovaya, The physiology and pathophysiology of red blood cells, Publishing office of TGU, Tomsk (2004) [in Russian].

30. M. Becatti, R. Marcucci, A. M. Gori, L. Mannini, E. Grifoni, A. A. Liotta, A. Sodi, R. Tartaro, N. Taddei, S. Rizzo, D. Prisco, R. Abbate, and C. Fiorillo, “Erythrocyte oxidative stress is associated with cell deformability in patients with retinal vein occlusion,” Journal of Thrombosis and Haemostasis 14(11), 2287–2297 (2016).

31. A. I. Berezniakova, O. D. Zhemela, “Deformability of the erythrocytes membrane in rats of different age in hypoxia,” Fiziolohichnyĭ zhurnal 59(3), 72–77 (2013).

32. M. Tarasev, M. Muchnik, L. Light, K. Alfano, and S. Chakraborty, “Individual variability in response to a single sickling event for normal, sickle cell, and sickle trait erythrocytes,” Translational Research 181, 96–107 (2017).

33. Y. Zhao, X. Wang, M. Noviana, and M. Hou, “Nitric oxide in red blood cell adaptation to hypoxia,” Acta Biochimica et Biophysica Sinica 50(7), 621–634 (2018).

34. M. Grau, A. Lauten, S. Hoeppener, B. Goebel, J. Brenig, C. Jung, W. Bloch, and F. Suhr, “Regulation of red blood cell deformability is independent of red blood cell-nitric oxide synthase under hypoxia,” Clinical Hemorheology and Microcirculation 63(3), 199–215 (2016).

35. O. V. Kosmachevskaya, A. F. Topunov, “Alternate and Additional Functions of Erythrocyte Hemoglobin,” Biochemistry (Moscow) 83(12) 1575–1593 (2018).

36. T. Greenhalgh, How to read a paper: the basics of evidence-based medicine, Fifth edition, BMJ Books (2014).






© 2014-2020 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+