Optical Clearing of Human Skin Using Polyethylene Glycols

Kirill V. Berezin
Saratov State University, Russia

Konstantin N. Dvoretskiy orcid (Login required)
Saratov State Medical University, Russia

Vladimir V. Nechaev
Saratov State Technical University, Russia

Anatoliy M. Likhter
Astrakhan State University, Russia

Ilmira T. Shagautdinova
Astrakhan State University, Russia

Valery V. Tuchin
Saratov State University, Russia
Institute of Precision Mechanics and Control, Russian Academy of Sciences, Saratov, Russia
Tomsk State University, Tomsk, Russia


Paper #3373 received 23 May 2020; revised manuscript received 11 Jun 2020; accepted for publication 12 Jun 2020; published online 27 Jun 2020.

DOI: 10.18287/JBPE20.06.020308

Abstract

Molecular docking and quantum chemistry (PM6 and DFT/B3LYP) methods have been used to investigate the interaction of a number of biological tissue immersion clearing agents (PEG200, PEG300 and PEG400) with collagen mimetic peptides (GPH)3. Correlations between the rate (efficiency) of optical clearing and the energy of complex formation are established.

Keywords

molecular dynamics; quantum chemistry; immersion optical clearing

Full Text:

PDF

References


1. J. M. Hirshburg, Chemical agent induced reduction of skin light scattering: doctoral dissertation, Texas A&M University (2009).

2. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd ed., PM254, SPIE Press, Bellingham, WA (2015).

3. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser & Photonics Reviews 7(5), 732-757 (2013).

4. E. A. Genina, A. N. Bashkatov, Y. P. Sinichkin, I. Yu. Yanina, and V. V. Tuchin, “Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy [Review],” Journal of Biomedical Photonics & Engineering 1(1), 22-58 (2015).

5. K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion,” IEEE Journal of Selected Topics in Quantum Electronics 18(3), 1244-1258 (2012).

6. V. V. Tuchin, “Polarized light interaction with tissues,” Journal of Biomedical Optics 21(7), 071114 (2016).

7. A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, and V. I. Kochubey, “Measurement of tissue optical properties in the context of tissue optical clearing,” Journal of Biomedical Optics 23(9), 091416 (2018).

8. E. N. Lazareva, P. Dyachenko (Timoshina), A. Bucharskaya, N. Navolokin, and V. Tuchin, “Estimation of dehydration of skin by refractometric method using optical clearing agents,” Journal of Biomedical Photonics & Engineering 5(2), 020305 (2019).

9. A. Yu. Sdobnov, M. E. Darvin, E. A. Genina, A. N. Bashkatov, J. Lademann, and V. V. Tuchin, “Recent progress in tissue optical clearing for spectroscopic application,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 197, 216–229 (2018).

10. S. M. Zaytsev, Y. I. Svenskaya, E. V. Lengert, G. S. Terentyuk, A. N. Bashkatov, V. V. Tuchin, and E. A. Genina, “Optimized skin optical clearing for optical coherence tomography monitoring of encapsulated drug delivery through the hair follicles,” Journal of Biophotonics 13(4), e201960020 (2020).

11. N. Sudheendran, M. Mohamed, M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Assessment of tissue optical clearing as a function of glucose concentration using optical coherence tomography,” Journal of Innovative Optical Health Sciences 3(3), 169-176 (2010).

12. D. K. Tuchina, R. Shi, A. N. Bashkatov, E. A. Genina, D. Zhu, Q. Luo, and V. V. Tuchin, “Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin,” Journal of Biophotonics 8(4), 332-346 (2015).

13. X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” Journal of Biophotonics 3(1-2), 44-52 (2010).

14. J. M. Hirshburg, K. M. Ravikumar, W. Hwang, and A. T. Yeh, “Molecular basis for optical clearing of collagenous tissues,” Journal of Biomedical Optics 15(5), 055002 (2010).

15. W. Feng, R. Shi, N. Ma, D. K. Tuchina, V. V. Tuchin, and D. Zhu, “Skin optical clearing potential of disaccharides,” Journal of Biomedical Optics 21(8), 081207 (2016).

16. K. N. Dvoretsky, K. V. Berezin, M. L. Chernavina, A. M. Likhter, I. T. Shagautdinova, E. M. Antonova, O. N. Grechukhina, and V. V. Tuchin, “Molecular Modeling of the Post-Diffusion Stage of Surface Bio-Tissue Layers Immersion Optical Clearing,” Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 12 (5), 961-967 (2018).

17. K. V. Berezin, K. N. Dvoretski, M. L. Chernavina, A. M. Likhter, V. V. Smirnov, I. T. Shagautdinova, E. M. Antonova, E. Yu. Stepanovich, E. A. Dzhalmuhambetova, and V. V. Tuchin, “Molecular modeling of immersion optical clearing of biological tissues,” Journal of Molecular Modeling 24(2), 45 (2018).

18. T. Yu, X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing,” Journal of Biomedical Optics 16(9), 095002 (2011).

19. V. D. Genin, P. Rakotomanga, S. M. Zaytsev, E. A. Genina, E. N. Lazareva, G. Khairallah, M. Amouroux, C. Soussen, H. Chen, W. Feng, D. Zhu, A. N. Bashkatov, W. Blondel, and V. V. Tuchin, “Research and development of effective optical technologies for diagnostics in dermatology,” Proceedings of SPIE 11065, 1106505 (2019).

20. D. K. Tuchina, V. D. Genin, A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical clearing of skin tissue ex vivo with polyethylene glycol,” Optics and Spectroscopy 120(1), 36-45 (2016).

21. K. Okuyama, K. Miyama, K. Mizuno, and H. P. Bächinger, “Crystal structure of (Gly-Pro-Hyp)9: implications for the collagen molecular model,” Biopolymers 97(8), 607-616 (2012).

22. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules,” Journal of the American Chemical Society 117(19), 5179-5197 (1995).

23. A. D. Becke, “Density‐functional thermochemistry. III. The role of exact exchange,” The Journal of Chemical Physics 98(7), 5648-5652 (1993).

24. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B 37(2), 785-789 (1988).

25. M. J. Frisch, G. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, X. Li, J. Bloino, H. P. Hratchian, A. F. Izmaylov, J. L. Sonnenberg, G. Zheng, M. Hada, and D. J. Fox, Gaussian09, Revision A.02, Gaussian Inc., Wallingford CT (2009).

26. J. J. P. Stewart, “Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements,” Journal of Molecular Modeling 13(12), 1173-1213 (2007).

27. O. Trott, A. J. Olson, “AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading,” Journal of Computational Chemistry 31(2), 455-461 (2010).

28. K. V. Berezin, K. N. Dvoretskii, M. L. Chernavina, V. V. Nechaev, A. M. Likhter, I. T. Shagautdinova, E. M. Antonova, and V. V. Tuchin, “Optical clearing of human skin using some monosaccharides in vivo,” Optics and Spectroscopy 127(2), 352-358 (2019).






© 2014-2020 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+