Characterization of Normal and Malignant Breast Tissues utilizing Hyperspectral Images and Associated Differential Spectrum Algorithm

Mohamed H. Aref orcid (Login required)
Biomedical Engineering Department, Military Technical College, Cairo, Egypt

Abou-Bakr M. Youssef
System & Biomedical Engineering Department, Cairo University, Giza, Egypt

Ibrahim H. Aboughaleb orcid
Biomedical Engineering Department, Military Technical College, Cairo, Egypt

Yasser H. El-Sharkawy orcid
Biomedical Engineering Department, Military Technical College, Cairo, Egypt


Paper #3384 received 30 Oct 2020; revised manuscript received 7 Apr 2021; accepted for publication 12 Apr 2021; published online 6 May 2021.

DOI: 10.18287/JBPE21.07.020302

Abstract

Breast malignancy is the most pervasive disease and a significant reason for death in women around the world. Recently, Photonic technologies play a vital role in medical applications. This study presents an outline of recent outcomes on the magnitude of breast tissue optical properties. We established an optical system setup utilizing a hyperspectral (HS) camera with poly-chromatic source lights with wavelength (380~1050 nm) for this investigation. Measuring the diffuse reflection (Ŗd) of the investigated ex vivo breast sample to select the optimum spectral image to differentiate between the normal and tumor in the near infra-red and visible (NIR–VIS) spectrum. Finally, applying the custom algorithm to increase the image contrast and applying contour delineation of the malignant regions. The experimental analysis indicates key spectroscopic variations between normal tissue and malignant region in range (550~650 nm). Although, after data normalization, there was noticeable variation at three ranges (630–680 nm), (720–770 nm), and (830–880 nm). The calculated standard deviation (Şd) between the normal and cancer tissue to validate the selective ranges shows that the highest contrast at wavelength 680 nm. However, the histogram analysis illustrates that the spectral image at 600 nm was higher contrast and wavelength 400 nm was the lowest contrast from the select seven-spectral images (400, 500, 600, 700, 800, 900, 1000 nm) to avoid the processing time of the captured HS 128-frames. The proposed potential method could provide promising results on the investigated breast sample optical properties in the diagnostic applications to assist the pathologist and the surgeon. Where the optimum wavelength at 680 nm for diagnostic applications and the ideal spectral image at 600 nm discriminate between the normal and malignant tissue.

Keywords

breast cancer early detection; hyperspectral imaging system; tissue optical properties; diffuse reflectance; spectral differences algorithm; optical spectroscopy

Full Text:

PDF Appendix

References


1. C. Review, “Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability- Adjusted Life-years for 32 Cancer Groups, 1990 to 2015 A Systematic Analysis for the Global Burden of Disease Study,” JAMA Oncology 3(4), 524–548 (2017).

2. F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: A Cancer Journal for Clinicians 68(6) 394–424 (2018).

3. R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2019,” CA: A Cancer Journal for Clinicians 69(1), 7–34 (2019).

4. K. Saika, T. Sobue, “Cancer statistics in the world,” Gan To Kagaku Ryoho 40, 2475–2480 (2013).

5. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2013,” CA: A Cancer Journal for Clinicians 63, 11–30 (2013).

6. J. Shan, H.D. Cheng, J. Shan, W. Ju, Y. Guo, and L. Zhang, “Automated breast cancer detection and classification using ultrasound images : A survey Automated breast cancer detection and classification using ultrasound images : A survey,” Pattern Recognition 43(1), 299–317 (2010).

7. D. Saravanan, D. Joseph, and S. Vaithyasubramanian, “Effective utilization of image information using data mining technique,” in Recent Trends and Advances in Artificial Intelligence and Internet of Things, V. Balas, R. Kumar, R. Srivastava (eds.), Springer, Cham, 207–215 (2020).

8. S. Alrahbi, P. M. Y. Chan, B. C. S. Ho, M. D. W. Seah, J. J. C. Chen, and E. Y. Tan, “Extent of margin involvement, lymphovascular invasion, and extensive intraductal component predict for residual disease after wide local excision for breast cancer,” Clinical Breast Cancer 15, 219–226 (2015).

9. A. L. Merrill, S. B. Coopey, R. Tang, M. P. McEvoy, M. C. Specht, K. S. Hughes, M. A. Gadd, and B. L. Smith, “Implications of New Lumpectomy Margin Guidelines for Breast-Conserving Surgery: Changes in Reexcision Rates and Predicted Rates of Residual Tumor,” Annals of Surgical Oncology 23, 729–734 (2016).

10. S. Alrahbi, P. M. Y. Chan, B. C. S. Ho, M. D. W. Seah, J. J. C. Chen, and E. Y. Tan, “Extent of margin involvement, lymphovascular invasion, and extensive intraductal component predict for residual disease after wide local excision for breast cancer,” Clinical Breast Cancer 15(3), 219–226 (2015).

11. E. Kho, B. Dashtbozorg, L. L. de Boer, K. K. Van de Vijver, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information,” Biomedical Optics Express 10(9), 4496 (2019).

12. R. G. Pleijhuis, M. Graafland, J. De Vries, J. Bart, J. S. De Jong, and G. M. Van Dam, “Obtaining Adequate Surgical Margins in Breast-Conserving Therapy for Patients with Early-Stage Breast Cancer : Current Modalities and Future Directions,” Annals of Surgical Oncology 16, 2717–2730 (2009).

13. E. L. Vos, A. Jager, C. Verhoef, A. C. Voogd, and L. B. Koppert, “Overall survival in patients with a re-excision following breast conserving surgery compared to those without in a large population-based cohort,” European Journal of Cancer 51(3), 282–291 (2015).

14. C. D. Runowicz, C. R. Leach, N. L. Henry, K. S. Henry, H. T. Mackey, R. L. Cowens‐Alvarado, R. S. Cannady, M. L. Pratt‐Chapman, S. B. Edge, and L. A. Jacobs, “American cancer society/American society of clinical oncology breast cancer survivorship care guideline,” CA: A Cancer Journal for Clinicians 66(1), 43–73 (2016).

15. S. L. Van Es, “Digital pathology: semper ad meliora,” Pathology 51(1), 1–10 (2019).

16. A. Madabhushi, G. Lee, “Image analysis and machine learning in digital pathology: Challenges and opportunities,” Medical Image Analysis 33, 170–175 (2016).

17. T. J. Flotte, D. A. Bell, “Anatomical pathology is at a crossroads,” Pathology 50(4), 373–374 (2018).

18. J. J. Keating, C. Fisher, R. Batiste, and S. Singhal, “Advances in intraoperative margin assessment for breast cancer,” Current Surgery Reports 4(4), 15 (2016).

19. K. Butler-Henderson, A. H. Lee, R. I. Price, and K. Waring, “Intraoperative assessment of margins in breast conserving therapy: A systematic review,” Breast 23(2), 112–119 (2014).

20. E. R. St John, R. Al-Khudairi, H. Ashrafian, T. Athanasiou, Z. Takats, D. J. Hadjiminas, A. Darzi, and D. R. Leff, “Diagnostic accuracy of intraoperative techniques for margin assessment in breast cancer surgery,” Annals of surgery 265(2), 300–310 (2017).

21. D. P. A. Versteegden, L. G. G. Keizer, L. E. M. Duijm, C. A. P. Wauters, and L. J. A. Strobbe, “Performance characteristics of specimen radiography for margin assessment for ductal carcinoma in situ : a systematic review,” Breast Cancer Research and Treatment 166, 669–679 (2017).

22. K. Esbona, Z. Li, and L. G. Wilke, “Intraoperative imprint cytology and frozen section pathology for margin assessment in breast conservation surgery: a systematic review,” Annals of surgical oncology 19(10), 3236–3245 (2012).

23. F. K. Althoubaity, A. Merdad, N. Y. Akeel, N. H. Zaidi, and A. O. Sultan, “Frozen Section Analysis of Breast Lumpectomy Margins,” Surgical Science 8(6), 269–277 (2017).

24. I. Journal, O. Medical, A. Yilmaz, M. Bayrak, K. Ozerkan, and H. Ozan, “Accuracy of Intraoperative Frozen Section Analysis in Borderline Ovarian Tumor and the Factors Affecting It,” International Journal of Medical Science and Clinical Invention 7(9), 7–12 (2020).

25. H. J. C. M. Sterenborg, E. Kho, L. L. de Boer, K. K. van de Vijver, and T. M. Ruers, “Hyperspectral imaging for intraoperative margin assessment during breast cancer surgery,” in Asia Communications and Photonics Conference, AF1K-6 (2016).

26. A. Sahu, Hyperspectral Imaging to Discern Malignant and Benign Canine Mammary Tumors, Master Thesis, Temple University, Philadelphia, USA (2012).

27. L. Ma, G. Lu, D. Wang, X. Qin, Z. G. Chen, and B. Fei, “Adaptive deep learning for head and neck cancer detection using hyperspectral imaging,” Visual Computing for Industry, Biomedicine, and Art 2(1), 18 (2019).

28. M. H. Fouad Aref, A. A. R. Sharawi, and Y. H. El-Sharkawy, “Delineation of the Arm Blood Vessels Utilizing Hyperspectral Imaging to Assist with Phlebotomy for Exploiting the Cutaneous Tissue Oxygen Concentration,” Photodiagnosis and Photodynamic Therapy 33, 102190 (2021).

29. H. Zhao, R. H. Webb, and B. Ortel, “A new approach for noninvasive skin blood imaging in microcirculation,” Optics & Laser Technology 34(1), 51–54 (2002).

30. U. Rubins, A. Grabovskis, J. Cimurs, Z. Marcinkevics, and A. Caica, “Hyperspectral evaluation of skin blood oxygen saturation at baseline and during arterial occlusion,” Proceedings of SPIE 10685, 106851A (2018).

31. T. Delineation, H. Fabelo, S. Ortega, R. L. Id, D. M. Id, G. M. Callic, E. Ju, D. Bulters, H. B. Id, A. Szolna, J. F. Piñeiro, C. Sosa, A. J. O. Shanahan, S. Bisshopp, D. Ravi, B. R. Kiran, A. Vega, B. Abelardo, G. Yang, and B. Stanciulescu, “An Intraoperative Visualization System Using Hyperspectral Imaging to Aid in Brain,” Sensors 18(2), 430 (2018).

32. M. H. Aref, I. H. Aboughaleb, and Y. H. El-Sharkawy, “Tissue characterization utilizing hyperspectral imaging for liver thermal ablation,” Photodiagnosis and Photodynamic Therapy 31, 101899 (2020).

33. N. Yavari, Optical spectroscopy for tissue diagnostics and treatment control, Doctoral Thesis, University of Bergen, Norway (2006).

34. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Applied Optics 37(16), 3586-3593 (1998).

35. M. Li, Developing a technique for combining light and ultrasound for deep tissue imaging, Master Thesis, Lund University, Sweden (2018).

36. V. Tuchin, “Tissue Optics and Photonics: Light-Tissue Interaction II,” Journal of Biomedical Photonics & Engineering 2(3), 030201 (2016).

37. K. G. Wakim, “Physiology of the liver,” The American Journal of Medicine 16(2), 256–271 (1954).

38. M. H. Aref, “Biomedical Research and Clinical Reviews,” Biomedical Research and Clinical Reviews 1, 1–13 (2020).

39. S. Swierczynski, F. Primavesi, E. Klieser, T. Kiesslich, T. Jäger, R. Illig, D. Neureiter, D. Ofner, and S. Stättner, “382. Thermographic monitoring of radiofrequency and microwave ablation in a perfused porcine liver model,” European Journal of Surgical Oncology 40(11), S147 (2014).

40. M. De Landro, M. Barberio, E. Felli, V. Agnus, M. Pizzicannella, M. Diana, and P. Saccomandi, “Hyperspectral image-based analysis of thermal damage in living liver undergoing laser ablation,” Proceedings of SPIE 11362, 113620G (2020).

41. R. Sucher, A. Athanasios, H. Köhler, T. Wagner, M. Brunotte, A. Lederer, I. Gockel, and D. Seehofer, “Hyperspectral Imaging (HSI) in anatomic left liver resection,” International Journal of Surgery Case Reports 62, 108–111 (2019).

42. M. De Landro, P. Saccomandi, M. Barberio, E. Schena, S. Member, and M. Diana, “Hyperspectral imaging for thermal effect monitoring in in vivo liver during laser ablation Hyperspectral imaging for thermal effect monitoring in in vivo liver during laser ablation,” In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1851–1854 (2019).

43. M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral imaging in the medical field: present and future,” Applied Spectroscopy Reviews 49(6), 435–447 (2014).

44. M. Aref, I. H. Aboughaleb, A.-B. Youssef, and Y. El-Sharkawy, “Novel Approach Exploiting the Hyperspectral Imaging System for Breast Cancer Therapy and Diagnosis,” Archives of Breast Cancer 7(4), 189–201 (2020).

45. I. H. Aboughaleb, M. H. Aref, and Y. H. El-Sharkawy, “Photodiagnosis and Photodynamic Therapy Hyperspectral imaging for diagnosis and detection of ex-vivo breast cancer,” Photodiagnosis and Photodynamic Therapy 31, 101922 (2020).

46. M. H. Aref, I. H. Aboughaleb, and Y. H. El-Sharkawy, “Custom optical imaging system for ex-vivo breast cancer detection based on spectral signature,” Surgical Oncology 35, 547–555 (2020).

47. T. D. O. Sullivan, A. E. Cerussi, D. J. Cuccia, B. J. Tromberg, T. D. O. Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light Diffuse optical imaging using spatially and temporally,” Journal of Biomedical Optics 17(7), 071311 (2012).

48. F. Baum, “1 Development, Anatomy, and Physiology of the Mammary Gland,” Breast Cancer: Diagnostic Imaging and Therapeutic Guidance, 1–3 (2017).

49. H. Ellis, V. Mahadevan, “Anatomy and physiology of the breast,” Surgery (Oxford) 31(1), 11–14 (2013).

50. S. Pandya, R. G. Moore, “Breast development and anatomy,” Clinical obstetrics and gynecology 54(1), 91–95(2011).

51. G. Mostafa, L. Cathey, and F. L. Greene (Eds.), Breast Anatomy, in Review of Surgery, Springer, New York, 161–162 (2006).

52. C. Frantz, K. M. Stewart, and V. M. Weaver, “The extracellular matrix at a glance,” Journal of Cell Science 123(24) 4195–4200 (2010).

53. T. R. Cox, J. T. Erler, “Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer,” Disease Models and Mechanisms 4(2), 165–178 (2011).

54. R. G. Aswathy, Y. Yoshida, “Near-infrared quantum dots for deep tissue imaging,” Analytical and Bioanalytical Chemistry 397, 1417–1435 (2010).

55. C. Bremer, “Fluorescence imaging with near-infrared light : new technological advances that enable in vivo molecular imaging,” European Radiology 13, 195–208 (2003).

56. Q. Miao, K. Pu, “Organic Semiconducting Agents for Deep-Tissue Molecular Imaging : Second Near-Infrared Fluorescence,” Advanced Materials 30(49), 1801778 (2018).

57. R. J. DiPerna, P. L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces,” Inventiones mathematicae 98, 511–547 (1989).

58. K. Rinzema, L. H. P. Murrer, and W. M. Star, “Direct experimental verification of light transport theory in an optical phantom,” Journal of the Optical Society of America A 15(8), 2078–2088 (1998).

59. S. S. M. Noor, K. Michael, S. Marshall, and J. Ren, “Hyperspectral image enhancement and mixture deep-learning classification of corneal epithelium injuries,” Sensors 17(11), 2644 (2017).

60. V. Kumar, P. Gupta, “Importance of Statistical Measures in Digital Image Processing,” International Journal of Emerging Technology and Advanced Engineering 2(8), 56–62 (2012).

61. S. Engineering, J. Zhang, and J. Hu, “Image Segmentation Based on 2D Otsu Method with Histogram Analysis,” In 2008 International Conference on Computer Science and Software Engineering 6, 105–108 (2008).

62. M. D. Abràmoff, P. J. Magalhães, and S. J. Ram, “Image processing with ImageJ,” Biophotonics International 11(7), 36–42 (2004).

63. O. Holub, S. T. Ferreira, “Quantitative histogram analysis of images,” Computer Physics Communications 175(9), 620–623 (2006).

64. H. Akbari, K. Uto, Y. Kosugi, K. Kojima, and N. Tanaka, “Cancer detection using infrared hyperspectral imaging,” Cancer Science 102(4), 852–857 (2011).

65. S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” Journal of Biomedical Optics 18(2), 026010 (2013).

66. M. Nathan, A. S. Kabatznik, and A. Mahmood, “Hyperspectral imaging for cancer detection and classification,” In 2018 3rd Biennial South African Biomedical Engineering Conference, 1–4 (2018).

67. R. Kumashiro, K. Konishi, T. Chiba, T. Akahoshi, S. Nakamura, M. Murata, M. Tomikawa, T. Matsumoto, Y. Maehara, and M. Hashizume, “Integrated endoscopic system based on optical imaging and hyperspectral data analysis for colorectal cancer detection,” Anticancer Research 36(8), 3925–3932 (2016).

68. I. H. Aboughaleb, M. H. Aref, and Y. H. El-Sharkawy, “Hyperspectral imaging for diagnosis and detection of ex-vivo breast cancer,” Photodiagnosis and Photodynamic Therapy 31, 101922 (2020).






© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+