Recent Advances in the Laser Radiation Transport through the Head Tissues of Humans and Animals – A Review

Alaa Sabeeh
Research-Educational Institute of Optics and Biophotonics, Saratov State University, Russia

Valery V. Tuchin (Login required)
Research-Educational Institute of Optics and Biophotonics, Saratov State University, Russia
Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, Russia
Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia

Paper #3393 received 15 Nov 2020; revised manuscript received 18 Dec 2020; accepted for publication 18 Dec 2020; published online 31 Dec 2020.

DOI: 10.18287/JBPE20.06.040201


Modern studies of the penetration of light into biological tissues is becoming very important in various medical applications. This is an important factor for determining the optical dose in many diagnostic and therapeutic procedures. The absorption and scattering properties of the tissue under study determine how deeply the light will penetrate into the tissue. However, these optical properties are highly dependent on the wavelength of the light source and tissue condition. This overview paper analyzes the transmission of light through different areas of human and animal head tissues, and the optimal laser wavelength and power density required to reach different parts of the brain are determined using lasers with different wavelengths by comparing the distribution of fluence, penetration depth and the mechanism of interaction between laser light and head tissues. The power variation in different regions of the head is presented, as estimated using Monte Carlo (MC) simulations. Data are analyzed for the absorption and scattering coefficients of the head tissue layers (scalp, skull, brain), calculated using integrating sphere measurements and inverse problem solving algorithms such as inverse MC (IMC) and adding-doubling (IAD). This study not only offered a quantitative comparison between wavelengths in terms of light transmission efficiency, but also anticipated the exciting opportunity for online, accurate and visible optimization of LLLT lighting parameters.


transcranial laser irradiation; tissue scattering; optical transmission; tissue optics; photothermal effects; nonlinear interactions; temperature; tissue damage; photochemical processes; PDT; LLLT

Full Text:



1. S. Stubinger, F. Klampfl, M. Schmidt, and H. F. Zeilhofer, “Lasers in Oral and Maxillofacial Surgery,” Springer Nature, Switzerland AG (2020).

2. S. Bordin-Aykroyd, R. B. Dias, and E. Lynch, “Laser-Tissue Interaction,” EC Dental Science 18(9), 2303–2308 (2019).

3. O. Hamdy, H. S. Mohammed, “Investigating the transmission profiles of 808 nm laser through different regions of the rat’s head,” Lasers in Medical Science (2020).

4. S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchansky, “Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications,” Journal of Biophotonics 11(12), e201800141 (2018).

5. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” Journal of Physics D: Applied Physics 38(15), 2543–2555 (2005).

6. E. A. Genina, A. N. Bashkatov, D. K. Tuchina, A. Dyachenko, N. Nafulukin, A. Shirokov, A.Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zenchenko, O. V. Semiachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomedical Optics Express 10(10), 5182–5197 (2019).

7. T. Li, C. Xue, P. Wang, Y. Li, and L. Wu, “Photon penetration depth in human brain for light stimulation and treatment: A realistic Monte Carlo simulation study,” Journal of Innovative Optical Health Sciences 10(5), 1743002 (2017).

8. V. V. Tuchin, “Tissue optics and photonics: Biological tissue structures,” Journal of Biomedical Photonics & Engineering 1(1), 3–21 (2015).

9. K. Kumar, K. Boone, J. Tuszynski, P. Barclay, and C. Simon, “Possible existence of optical communication channels in the brain,” Scientific Reports (6), 36508 (2016).

10. P. Adams, F. Petruccione, “Quantum effects in the brain: A review,” AVS Quantum Science 2(16), 022901 (2020).

11. S. Wirdatmadja, P. Johari, A. Desai, Y. Bae, E. Stachowiak, M. Stachowiak, J. M. Jornet, and S. Balasubramaniam, “Analysis of light propagation on physiological properties of neurons for nanoscale optogenetics,” IEEE Transactions on Neural Systems and Rehabilitation Engineering 10, 1534–4320 (2019).

12. K. Ning, X. Zhang, X. Gao, T. Jiang, H. Wang, S. Chen, A. Li, and J. Yuan, “Deep-learning-based whole-brain imaging at single-neuron resolution,” Biomedical Optics Express 11(7), 3567–3584 (2020).

13. V. V. Tuchin, “Tissue optics and photonics: Light-tissue interaction,” Journal of Biomedical Photonics & Engineering 1(2), 98–134 (2015).

14. V. V. Tuchin, “Tissue optics and photonics: Light-tissue interaction II,” Journal of Biomedical Photonics & Engineering 2(3), 030201 (2016).

15. M. Gerstenmayer, B. Fellah, R. Magnin, E. Selingue, and B. Larrat, “Acoustic Transmission Factor through the Rat Skull as a Function of Body Mass, Frequency and Position,” Ultrasound in Medicine & Biology 44(11), 2336–2344 (2018).

16. G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. G. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nature Photonics 8(9), 723–730 (2014) (accessed: December 2020 through

17. A. Yu. Sdobnov, M. E. Darvin, E. A. Genina, A. N. Bashkatov, J. Lademann, and V. V. Tuchin, “Recent progress in tissue optical clearing for spectroscopic application,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 197, 216–229 (2018).

18. P. Wang, T. Li, “Which wavelength is optimal for transcranial low-level laser stimulation?” Journal of Biophotonics 12(7), e201800173 (2019).

19. M. V. P. Sousa, R. Prates, I. T. Kato, C. P. Sabino, L. C. Suzuki, M. S. Ribeiro, and E. M. Yoshimura, “Laser scattering by Transcranial rat brain illumination,” Proceeding of SPIE 8427, 842728 (2012).

20. P. A. Lapchak, P. D. Boitano, P. V. Butte, D. J. Fisher, T. Holscher, E. J. Ley, M. Nuno, A. H. Voie, and P. S. Rajput, “Transcranial Near-Infrared Laser Transmission (NILT) Profiles (800 nm): Systematic Comparison in Four Common Research Species,” PLoS ONE 10(6), e0127580 (2015).

21. V. V. Lychagov, V. V. Tuchin, M. A. Vilensky, B. N. Reznik, Th. Ichim, and L. De. Taboada, “Experimental study of NIR transmittance of the human skull,” Proceeding of SPIE 6085, 60850T (2006).

22. T. Myllylä, V. Yu. Toronov, J. Claassen, V. Kiviniemi, and V. V. Tuchin, “Near-infrared spectroscopy in multimodal brain research,” Chapter 10 in Handbook of Optical Biomedical Diagnostics. Light-Tissue Interaction, V. V. Tuchin (ed.), SPIE Press, Bellingham, WA, USA, 687–735 (2016).

23. F. Tian, S. N. Hase, F. Gonzalez-Lima, and H. Liu, “Transcranial laser stimulation improves human cerebral oxygenation,” Lasers in Surgery and Medicine 48(4), 343–349 (2016).

24. D. W. Barrett, F. Gonzalez-Lima, “Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans,” Neuroscience 230, 13–23 (2013).

25. V. V. Tuchin, Optical Clearing of Tissues and Blood, SPIE Press, Bellingham, WA (2005).

26. E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, I. Yu. Yanina, and V. V. Tuchin, “Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy,” Journal of Biomedical Photonics & Engineering 1(1), 22-58 (2015).

27. L. Oliveira, V. V. Tuchin, The Optical Clearing Method: A New Tool for Clinical Practice and Biomedical Engineering, Springer Nature Switzerland AG (2019).

28. I. Costantini, R. Cicchi, L. Silvestri, F. Vanzi, and F. S. Pavone, “In-vivo and ex-vivo optical clearing methods for biological tissues: review,” Biomedical Optics Express 10(10), 5251–5267 (2019).

29. E. A. Genina, Y. I. Surkov, I. A. Serebryakova, A. N. Bashkatov, V. V. Tuchin, and V. P. Zharov, “Rapid ultrasound optical clearing of human light and dark skin,” IEEE Transactions on Medical Imaging 39(10), 3198–3206 (2020).

30. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of human dura mater by glucose solutions,” Journal of Biomedical Photonics & Engineering 3(1), 010309 (2017).

31. E. C. Cheshire, R. D. G. Malcomson, S. Joseph, M. G. B. Biggs, D. Adlam, and G. N. Rutty, “Optical clearing of the dura mater using glycerol: a reversible process to aid the post-mortem investigation of infant head injury,” Forensic Science, Medicine, and Pathology 11(3), 395–404 (2015).

32. S. Mahmoodkalayeh, M. A. Ansari, and V. V. Tuchin, “Head model based on the shape of the subject’s head for optical brain imaging,” Biomedical Optics Express 10(6), 2795–2808 (2019).

33. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human cranial bone in the spectral range from 800 to 2000 nm,” Proceeding of SPIE 6163, 616310 (2006).

34. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical Clearing of Cranial Bone,” Advances in Optical Technologies, 267867 (2008).

35. N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Physics in Medicine and Biology 49(3), 469–483 (2004).

36. M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Physics in Medicine and Biology 38(4), 503–510 (1993).

37. Y. Zhang, C. Zhang, X. Zhong, and D. Zhu, “Quantitative evaluation of SOCS-induced optical clearing efficiency of skull,” Quantitative Imaging in Medicine and Surgery 5(1), 136–142 (2015).

38. A. Yu. Sdobnov, J. Lademann, M. E. Darvin, and V. V. Tuchin, “Methods for optical skin clearing in molecular optical imaging in dermatology,” Biochemistry (Moscow) 84(1), 144–158 (2019).

39. Y. J. Zhao, T. T. Yu, C. Zhang, Z. Li, Q. M. Luo, T. H. Xu, and D. Zhu, “Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution,” Light: Science & Applications 7(9), 17153 (2018).

40. H. Soleimanzad, H. Gurden, and F. Paina, “Optical properties of mice skull bone in the 455- to 705-nm range,” Journal of Biomedical Optics 22(1), 010503 (2017).

41. I. Nishidate, C. Mizushima, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression,” Journal of Biomedical Optics 20(2), 27003 (2015).

42. I. Nishidate, C. Mizushima, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “In vivo estimation of light scattering and absorption properties of rat brain using single reflectance fiber probe during cortical spreading depression,” Proceeding of SPIE 8578, 85782Y (2013).

43. J. D. Johansson, “Spectroscopic method for determination of the absorption coefficient in brain tissue,” Journal of Biomedical Optics 15(5), 0570059 (2010).

44. X. Fang, B. Pan, W. Liu, Z. Wang, and T. Li, “Effect of scalp hair follicles on NIRS quantification by Monte Carlo simulation and Visible Chinese Human dataset,” IEEE Photonics Journal 10(5), 3901110 (2018).

45. J. Tremblay, E. Martinez-Montes, P. Vannasing, D. Nguyen, M. Sawan, F. Lepore, and A. Gallagher, “Comparison of source localization techniques in diffuse optical tomography for fNIRS application using a realistic head model,” Biomedical Optics Express 9(7), 2994–3016 (2018).

46. L. Wu, Y. Lin, and T. Li, “Effect of human brain edema on light propagation: a Monte Carlo modeling based on the Visible Chinese Human dataset,” IEEE Photonics Journal 9(5), 6101810 (2017).

47. J. Herrera-Vega, S. Montero-Hernandez, I. Tachtsidis, C. G. Trevino-Palacios, and F. Orihuela-Espina, “Modelling and validation of diffuse reflectance of the adult human head for fNIRS: scalp sub-layers definition,” Proceeding of SPIE 10572, 1057206 (2017).

48. N. Davoodzaden, M. S. Cano-Velazquez, C. R. Jonak, D. L. Halaney, D. K. Binder, J. Hernandez-Cordero, and G. Aguilar, “Theranostic cranial implant for hyperspectral light delivery and microcirculation imaging without scalp removal,” bioRxiv 10(26), (2019).

49. M. M. Koletar, A. Dorr, M. E. Brown, J. McLaurin, and B. Stefanovic, “Refinement of a chronic cranial window implant in the rat for longitudinal in vivo two–photon fluorescence microscopy of neurovascular function,” Scientific Reports 9(12), 5499 (2019).

50. N. Kunori, I. Takashima, “An implantable cranial window using a collagen membrane for chronic voltage-sensitive dye imaging,” Micromachines 10(11), 789 (2019).

51. M. S. Cano-Velazquez, N. Davoodzadeh, D. Halaney, C. R. Jonak, D. K. Binder, J. Hernandez-Cordero, and G. Aguilar, ”Enhanced near infrared optical access to the brain with a transparent cranial implant and scalp optical clearing,” Biomedical Optics Express 10(7), 3369–3379 (2019).

52. N. Davoodzadeh, M. S. Cano-Velazquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging,” Biomedical Optics Express 9(10), 4879–4892 (2018).

53. S. Ma, L. Ukkonen, L. Sydanheimo, and T. Bjorninen, “Robustness evaluation of split ring resonator antenna system for wireless brain care in semi-anatomical ellipsoid head model,” Applied Computational Electromagnetics Society Journal 33(9), 8 (2018).

54. J. D. Johansson, K. Wardell, “Intracerebral quantitative chromophore estimation from reflectance spectra captured during deep brain stimulation implantation,” Journal of Biophotonics 6(5), 435–445 (2013).

55. E. Zinchenko, N. Navolokin, A. Shirokov, B. Khlebtsov, A. Dubrovsky, E. Saranceva, A. Abdurashitov, A. Khorovodov, A. Terskov, A. Mamedova, M. Klimova, I. Agranovich, D. Martinov, V. Tuchin, O. Semyachkina-Glushkovskaya, and J. Kurts, “Pilot study of transcranial photobiomodulation of lymphatic clearance of beta-amyloid from the mouse brain: breakthrough strategies for nonpharmacologic therapy of Alzheimer’s disease,” Biomedical Optics Express 10(8), 4003–4017 (2019).

56. K. Nowak, E. Mix, J. Gimsa, U. Strauss, K. K. Sriperumbudur, R. Benecke, and U. Gimsa, “Optimizing a rodent model of Parkinson’s disease for exploring the effects and mechanisms of deep brain stimulation,” Parkinson's Disease, 414682 (2011).

57. S. Mamani, L. Shi, D. Nolan, and R. Alfano, “Majorana vortex photons a form of entangled photons propagation through brain tissue,” Journal of Biophotonics 12(10), e201900036 (2019).

58. S. Mamani, L. Shi, T. Ahmed, R. Karnik, A. Rodriguez-Contreras, D. Nolan, and R. Alfano, “Transmission of classically entangled beams through mouse brain tissue,” Journal of Biophotonics 11(12), e201800096 (2018).

59. A. Gerega, D. Milej, W. Weigl, M. Kacprzak, and A. Liebert, “Multiwavelength time-resolved near-infrared spectroscopy of the adult head: assessment of intracerebral and extracerebral absorption changes,” Biomedical Optics Express 9(7), 2974–2993 (2018).

60. J. T. Alander, O. M. Villet, T. Pätilä, I. S. Kaartinen, M. Lehecka, T. Nakaguchi, T. Suzuki, and V. Tuchin, “Review of Indocyanine Green Imaging in Surgery,” Chapter 4 in Fluorescence Imaging for Surgeons: Concepts and Applications, F. D. Dip, T. Ishizawa, N. Kokudo, R. Rosenthal (eds.), Springer International Publishing Switzerland, 35–53 (2015).

61. F. Salehpour, P. Cassano, N. Rouhi, M. R. Hamblin, L. D. Taboada, F. Farajdokht, and J. Mahmoudi, “Penetration profiles of visible and near-infrared lasers and light-emitting diode light through the head tissues in animal and human species: a review of literature,” Photobiomodulation, Photomedicine, and Laser Surgery 37(10), 581–595 (2019).

© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+