Magnetic Particle Trapping in a Branched Blood Vessel in the Presence of Magnetic Field

Samia F. Salem (Login required)
Department of Optics and Biophotonics, Saratov State University, Russia
Department of Physics, Faculty of Science, Benha University, Egypt

Valery V. Tuchin
Department of Optics and Biophotonics, Saratov State University, Russia
Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, Russia
Laboratory of Molecular Imaging, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia


Paper #3395 received 17 Nov 2020; revised manuscript received 11 Dec 2020; accepted for publication 12 Dec 2020; published online 31 Dec 2020.

DOI: 10.18287/JBPE20.06.040302

Abstract

This study presents a theoretical model by using the COMSOL Multiphysics® software to describe the behavior of magnetic nanoparticles through blood stream in a branched blood vessel under the influence of cylindrical permanent magnet that is located outside the vessel. The magnet is placed at one branched vessel to attract the magnetic particles towards targeted locations. The fluid (blood) is assumed being Newtonian; its flow is incompressible and laminar. Magnetic nanoparticles, such as superparamagnetic iron oxide (Fe3O4) nanoparticles are used in this theoretical study. The mechanisms of magnetic nanoparticles travelling in the blood stream under influence of a localized static magnetic field are numerically studied. The equations of motion for particles in the flow are governed by a combination of magnetic equations for the permanent magnetic field and the Navier-Stokes equations for fluid.

Keywords

magnetic nanoparticles; branching vessels; permanent magnet; magnetism; Newtonian fluid; blood vessel; computational modeling

Full Text:

PDF

References


1. S. Sukumaran, M. S. Neelakandan, N. Shaji, P. Prasad, and V. K. Yadunath, “Magnetic Nanoparticles: Synthesis and Potential Biological Applications,” JSM Nanotechnology & Nanomedicine 6(2), 1068 (2018).

2. G. Kandasamy, D. Maity, “Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics,” International Journal of Pharmaceutics 496(2), 191–218 (2015).

3. K. McNamara, S. A. M. Tofail, “Nanoparticles in biomedical applications,” Advances in Physics: X 2(1), 54–88 (2017).

4. M. R. Ghazanfari, M. Kashefi, S. F. Shams, and M. R. Jaafari, “Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications,” Biochemistry Research International, 7840161 (2016).

5. M. T. H.Bhuiyan, M. N. Chowdhury, and M. S. Parvin, “Potential Nanomaterials and their Applications in Modern Medicine: An Overview,” ARC Journal of Cancer Science 2(2), 25–33 (2016).

6. Y.-T. Chen, A. G. Kolhatkar, O. Zenasni, S. Xu, and T. R. Lee, “Biosensing Using Magnetic Particle Detection Techniques,” Sensors 17(10), 2300 (2017).

7. Y. Chen, X. Ding, Y. Zhang, A. Natalia, X. Sun, Z. Wang, and H. Shao, “Design and synthesis of magnetic nanoparticles for biomedical diagnostics,” Quantitative imaging in medicine and surgery 8(9), 957–970 (2018).

8. K. McNamara, S. A. Tofail, “Nanosystems: The use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications,” Physical Chemistry Chemical Physics 17(42), 27981–27995 (2015).

9. O. A. Sindeeva, R. A. Verkhovskii, A. S. Abdurashitov, D. V. Voronin, O. I. Gusliakova, A. A. Kozlova, O. A. Mayorova, A. V. Ermakov, E. V. Lengert, N. A. Navolokin, V. V. Tuchin, D. A. Gorin, G. B. Sukhorukov, and D. N. Bratashov, “Effect of Systemic Polyelectrolyte Microcapsule Administration on the Blood Flow Dynamics of Vital Organs,” ACS Biomaterials Science & Engineering 6(1), 389−397 (2020).

10. X. Zhang, M. Luo, P. Tan, L. Zheng, and C. Shu, “Magnetic nanoparticle drug targeting to patient-specific atherosclerosis: Effects of magnetic field intensity and configuration,” Applied Mathematics and Mechanics 41(2), 349–360 (2020).

11. D. Voronin, O. Sindeeva, M. Kurochkin, O. Mayorova, I. Fedosov, O. Semyachkina-Glushkovskaya, D. Gorin, V. V. Tuchin, and G. Sukhorukov, “In vitro and in vivo visualization and trapping of fluorescent magnetic microcapsules in a blood stream,” ACS Applied Materials & Interfaces 9(8), 6885–6893 (2017).

12. E. M. Múzquiz-Ramos, V. Guerrero-Chávez, B. I. Macías-Martínez, C. M. López-Badillo, and L. A. García-Cerda, “Synthesis and characterization of maghemite nanoparticles for hyperthermia applications,” Ceramics International Part A 4(1), 397–402(2015).

13. R. Di Corato, A. Aloisi, S. Rella, J.-M. Greneche, G. Pugliese, T. Pellegrino, C. Malitesta, and R. Rinaldi, “Maghemite Nanoparticles with Enhanced Magnetic Properties: One-Pot Preparation and Ultrastable Dextran Shell,” ACS Applied Materials & Interfaces 10(24), 20271–20280 (2018).

14. J. Kim, J. Oh, and B. Choi, “Magnetomotive laser speckle imaging,” Journal of Biomedical Optics 15(1), 011110 (2010).

15. E. P. Furlani, Permanent Magnet and Electromechanical Device, Materials, Analysis and Applications, Academic, New York (2001).

16. R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Fluids, Volume 1 Fluid Mechanics, Wiley, NY (1987).

17. L. Leal, “Particle motions in a viscous fluid,” Annual Review of Fluid Mechanics 12(1), 435–476 (1980).

18. Y. Liu, W. K. Liu, T. Belytschko, N. Patankar, A. C. To, A. Kopacz, and J. H. Chung, “Immersed electro kinetic finite element method,” International Journal for Numerical Methods in Engineering 71(4), 379–405 (2007).

19. J. G. Teeguarden, P. M. Hinderliter, G. Orr, B. D. Thrall, and J. G. Pounds, “Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments,” Toxicological Sciences 95(2), 300–312 (2006).

20. S. Wang, Y. Zhou, J. Tan, J. Xu, J. Yang, and Y. Liu, “Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field,” Computational mechanics 53(3), 403–412 (2004).

21. B. Kirby, Micro- and nanoscale fluid mechanics transport in microfluidic devices, Cambridge University Press, New York (2010).

22. T. B. Jones, Dielectrophoresis and magnetophoresis, Electromechanics of Particles, Cambridge University Press, New York (1995).






© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+