Measurement of Silicon Nanoparticles Temperature by Raman Spectroscopy

Alida F. Alykova (Login required)
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Russian Federation
Prokhorov General Physics Institute of RAS, Moscow, Russian Federation

Maria S. Grigoryeva
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Russian Federation
P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russian Federation

Irina N. Zavestovskaya
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Russian Federation
P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russian Federation

Victor Yu. Timoshenko
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Russian Federation
P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russian Federation
Lomonosov Moscow State University, Russian Federation


Paper #3397 received 22 Dec 2020; revised manuscript received 24 Mar 2021; accepted for publication 24 Mar 2021; published online 30 Mar 2021.

DOI: 10.18287/JBPE21.07.010303

Abstract

The temperature of silicon nanoparticles under laser photo-induced heating is determined from the ratio of the intensities of the Stokes and anti-Stokes components of the Raman scattering. The obtained results of the dependence of nanoparticles temperature on the laser radiation intensity and the temperature dependence of the Raman line position maybe used to determine the optimal regimes of photo-hyperthermia enhanced by silicon nanoparticles for cancer therapy.

Keywords

Raman scattering; nanoparticles; nanocrystalline silicon; porous silicon; hyperthermia

Full Text:

PDF

References


1. A. A. Ischenko, G. V. Fetisov, and L. A. Aslanov, Nanosilicon: Properties, Synthesis,Applications, Methods of Analysis and Control, CRC Press, Boca Raton, USA (2014). ISBN 978-1-4665-9423-4.

2. А. V. Kabashin, V. Yu. Timoshenko, “What theranostic applications could ultra-pure lasersynthesized Si nanoparticles have in cancer?” Nanomedicine 11(17), 2247–2250 (2016).

3. L. A. Osminkina, V. Yu. Timoshenko, “Porous Silicon as a Sensitizer for Biomedical Applications,” Mesoporous Biomaterials 3, 39–48 (2016).

4. Yu. V. Kargina, A. M. Perepukhov, A. Yu. Kharin, E. A. Zvereva, A. V. Koshelev, S. V. Zinovyev, A. V. Maximychev, A. F. Alykova, N. V. Sharonova, V. P. Zubov, M. V. Gulyaev, Y. A. Pirogov, A. N. Vasiliev, A. A. Ischenko, and V. Yu. Timoshenko, “Silicon Nanoparticles prepared by plasma-assisted ablative synthesis: physical roperties and potential biomedical applications,” Physica Status Solidi A 216(14), 1800897 (2019).

5. V. M. Petriev, V. K. Tischenko, A. A. Mikhailovskaya, A. A. Popov, G. Tselikov, I. Zelepukin, S. M. Deyev, A. D. Kaprin, S. Ivanov, V. Yu. Timoshenko, P. N. Prasad, I. N. Zavestovskaya, and A. V. Kabashin, “Nuclear nanomedicine using Si nanoparticles as safe and effective carriers of 188 Re radionuclide for cancer therapy”, Scientific Reports 9(1), 1–10 (2019).

6. S. Kudryashov, A. Nastulyavichus, A. K. Ivanova, N. A. Smirnov, R. A. Khmelnitskiy, A. A. Rudenko, I. N. Saraeva, E. R. Tolordava, A. Yu. Kharin, I. N. Zavestovskaya, Y. M. Romanova, D. A. Zayarny, and A. A. Ionina, “High-throughput laser generation of Si-nanoparticle based surface coatings for antibacterial applications,” Applied Surface Science 470, 825–831 (2019).

7. F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).

8. M. B. Gongalsky, L. A. Osminkina, A. Pereira, A. A. Manankov, A. A. Fedorenko, A. N. Vasiliev, V. V. Solovyev, A. A. Kudryavtsev, M. Sentis, A. V. Kabashin, and V. Yu. Timoshenko, “Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging,” Scientific Reports 6, 24732 (2016).

9. L. Gu, D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nature Communications 4, 2326 (2013).

10. M. O. Morozov, A. V. Kabashin, V. Timoshenko, and I. N. Zavestovskaya, “Photoluminescence properties of silicon nanocrystals grown by nanosecond laser ablation of solid-state targets in an inert gas atmosphere,” Bulletin of the Lebedev Physics Institute 44(12), 353–356 (2017).

11. A. F. Alykova, V. G. Yakunin, V. Yu. Timoshenko, and I. N. Zavestovskaya, “Optical methods of silicon nanoparticle diagnostics for applications in biomedicine,” Journal of Biomedical Photonics & Engineering 5(2), 020304 (2019).

12. А. Yu. Kharin, V. Lysenko, A. Rogov, Y. V. Ryabchikov, A. Geloen, I. Tishchenko, O. Marty, P. G. Sennikov, R. A. Kornev, I. N. Zavestovskaya, A. V. Kabashin, and V. Yu. Timoshenko, “Bi-Modal Nonlinear Optical Contrast from Si Nanoparticles for Cancer Theranostics,” Advanced Optical Materials 7(13), 1801728 (2019).

13. A. V. Kabashin, A. Singh, M. T. Swihart, I. N. Zavestovskaya, and P. N. Prasad, “Laser-Processed Nanosilicon: A Multifunctional nanomaterial for Energy and Healthcare,” ACS nano 13(9), 9841–9867 (2019).

14. A. V. Kabashin, K. P. Tamarov, Yu. V. Ryabchikov, L. A. Osminkina, S. V. Zinovyev, J. V. Kargina, M. B. Gongalsky, A. Al-Kattan, V. G. Yakunin, M. Sentis, A. V. Ivanov, V. N. Nikiforov, A. P. Kanavin, I. N. Zavestovskaya, and V. Yu. Timoshenko, “Si nanoparticles as sensitizers for radio frequency-induced cancer hyperthermia,” Proceedings of SPIE 9737, 97370A (2016).

15. C. Lee, H. Kim, C. Hong, M. Kim, S. S. Hong, D. H. Lee, and W. I. Lee, “Porous silicon as anagent for cancer thermotherapy based on near-infrared light irradiation,” Journal of Materials Chemistry 18(40), 4790–4795 (2008).

16. A. Oleshchenko, A. Yu. Kharin, A. F. Alykova, O. V. Karpukhina, N. V. Karpov, A. A. Popov, V. V. Bezotosnyia, S. M. Klimentov, I. N. Zavestovskaya, A. V. Kabashin, and V. Yu. Timoshenko, “Localized infrared radiation-induced hyperthermia sensitized by laser-ablated silicon nanoparticles for phototherapy applications,” Applied Surface Science 516, 145661 (2020).

17. M. Balkanski, R. F. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Physical Review B 28(4), 1928–1934 (1983).

18. M. J. Konstantinovic, S. Bersier, X. Wang, M. Hayne, P. Lievens, R. E. Silverans, and V. V. Moshchalkov, “Raman scattering in cluster-deposited nanogranular silicon films,” Physical Review B 66, 161311(R) (2002).

19. S. S. Périchon, V. Lysenko, B. Remaki, and D. Barbier, “Measurement of porous silicon thermal conductivity by micro-Raman scattering,” Journal of Applied Physics 86(8), 4700 (1999).

20. I. H. Campbell, P. M. Fauchet, “The Effects of Microcrystal Size and Shape on the One Phonon Raman Spectra of Crystalline Semiconductors,” Solid State Communications 58(10), 739–741 (1986).

21. L. A. Osminkina, K. A. Gonchar, V. S. Marshov, K. V. Bunkov, D. V. Petrov, L. A. Golovan, F. Talkenberg, V. A. Sivakov, and V. Yu. Timoshenko, “Growth, Structure and Optical Properties of Silicon Nanowires Formed by Metal-Assisted Chemical Etching,” Nanoscale Research Letters 7(6), 602–606 (2012).






© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+