Modeling of 980 nm and 1470 nm Laser Radiation Absorbance Efficiency in the Blood Vessel Depending on the Structure of Titanium–Containing Optothermal Fiber Converter

Tung Thanh Do
ITMO University, Saint Petersburg, Russian Federation

Andrey V. Belikov
ITMO University, Saint Petersburg, Russian Federation

Yulia V. Semyashkina (Login required)
ITMO University, Saint Petersburg, Russian Federation


Paper #3399 received 31 Dec 2020; revised manuscript received 10 May 2021; accepted for publication 14 May 2021; published online 20 May 2021.

DOI: 10.18287/JBPE21.07.020304

Abstract

Using quartz fiber with titanium-containing optothermal fiber converter (TOTFC) is promising in endovenous laser coagulation (EVLA) for the treatment of varicose veins. This study aims to research the variation in the optical properties of TOTFC as its microstructure changes under the condition that TiO2 spheres inside converter are arranged in such a way that the Mie theory approximation can be applied. The absorbance efficiency of laser energy with 980 nm and 1470 nm wavelengths for TOTFC has been calculated. Optical multidimensional simulation for the EVLA process was developed and calculated. The optimal ranges of microstructure’s parameters for TOTFC in the EVLA process were discussed.

Keywords

titanium; optical fiber; varicose vein; blood; optical properties; converter

Full Text:

PDF

References


1. А. V. Skripnik, “Opto-thermal fiber converter of laser radiation,” Journal of instrument engineering 9(56), 37–42 (2013).

2. R. M. Verdaasdonk, C. F. P. Van Swol, “Laser light delivery systems for medical applications,” Physics in Medicine and Biology 42, 869–894 (1997).

3. A. V. Belikov, A. V. Skrypnik, and K. V. Shatilova, “Comparison of diode laser in soft tissue surgery using continuous wave and pulsed modes in vitro,” Frontiers of Optoelectronics 8(2), 212–219 (2015).

4. A. V. Belikov, A. V. Skrypnik, and V. Y. Kurnyshev, “Modeling of structure and properties of thermo-optical converters for laser surgery,” Proceedings of SPIE 9917, 99170G (2015).

5. Yu. L. Shevchenko, K. V. Mazaishvili, and Yu. M. Stoiko, Laser Surgery for Varicose Vein Disease, Borges, Moscow (2010) [in Russian]. ISBN: 978-5-9902607-1-9.

6. A. A. Poluektova, W. S. J. Malskat, M. J. C. van Gemert, M. E. Vuylsteke, C. M. A. Bruijninckx, H. A. Martino Neumann, and C. W. M. van der Geld, “Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling,” Lasers in Medical Science 29(2), 441–452 (2014).

7. R. R. Van Den Bos, P. W. M.van Ruijven, C. W. M. van der Geld, M. J. C. van Gemert, H. A. M. Neumann, and T. Nijstena, “Endovenous simulated laser experiments at 940 nm and 1470 nm suggest wavelength-independent temperature profiles,” European Journal of Vascular and Endovascular Surgery 44(1), 77–81 (2012).

8. Е. V. Shaydakov, Е. А. Iluhin, Endovascular methods in the treatment of varicose veins, Diton-Аrt, Saint Petersburg (2016).

9. Yu. L. Shevchenko, Yu. M. Stoyko, K. V. Mazayshvili, and T. V. Khlevtova, “The mechanism of endovenous laser obliteration: a new look,” Phlebology 5(1), 46–50 (2011) [in Russian]. ISBN: 978-5-905048-97-5.

10. M. Amzayyb, R. R. van den Bos, V. M. Kodach, D. M. de Bruin, T. Nijsten, H. A. M. Neumann, and M. J. C. van Gemert, “Carbonized blood deposited on fibres during 810, 940 and 1,470 nm endovenous laser ablation: thickness and absorption by optical coherence tomography,” Lasers in Medical Science 25(3), 439–447 (2010).

11. A. V. Belikov, A. V. Skrypnik, “Laser heating dynamics and glow spectra of carbon-, titanium- and erbium-containing optothermal fibre converters for laser medicine,” Quantum Electronics 47(7), 669−674 (2017).

12. A. V. Belikov, A. V. Skrypnik, “Soft tissue cutting efficiency by 980 nm laser with carbon-, erbium-, and titanium-doped optothermal fiber converters,” Lasers in Surgery and Medicine 51(2), 185−200 (2019).

13. A. V. Belikov, A. V. Skrypnik, and I. S. Salogubova, “Optical and thermal modeling of Ti-doped optothermal fiber converter for laser surgery,” Proceedings of SPIE 11065, 1106514 (2019).

14. A. V. Belikov, T. Do, and Yu. V. Semyashkina, “Laser heating numerical simulation of titanium-containing optothermal fiber converter and vein wall during endovasal laser coagulation,” Scientific and Technical Journal of Information Technologies, Mechanics and Optics 20(4), 485–493 (2020).

15. A. V. Belikov, T. Do Thanh, A. V. Skrypnik, and Y. V. Semyashkina, “Modeling of optothermal fiber converters interaction with vein during endovenous laser coagulation,” Proceedings of SPIE 11457, 114571L (2020).

16. M. Vuylsteke, J. V. Dorpe, J. Roelens, Th. D. Bo, and S. Mordon, “Endovenous laser treatment: a morphological study in an animal model,” Phlebology 24(4), 166–175 (2009).

17. T. Wriedt, “Mie theory: a review,” The Mie Theory 169, 53–71 (2012).

18. J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Applied Optics 27(19), 4027–4033 (1988).

19. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” The journal of physical chemistry B 110(14), 7238–7248 (2006).

20. W. C. Mundy, J. A. Roux, and A. M. Smith, “Mie scattering by spheres in an absorbing medium,” JOSA 64(12), 1593–1597 (1974).

21. Q. Fu, W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Applied Optics 40(9), 1354–1361 (2001).

22. C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles, Wiley, New York, USA (1983).

23. H. C. van de Hulst, Light scattering by small particles, Dover Publications, New York, USA (1981).

24. K. N. Liou, “A complementary theory of light scattering by homogeneous spheres,” Applied Mathematics and Computation 3(4), 331–358 (1977).

25. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis (Eds.), “Concepts, terms, notation,” Chapter 1 in Light Scattering by Nonspherical Particles, 3–27 (2000).

26. J. D. Cartigny, Y. Yamada and C. L. Tien, “Radiative Transfer With Dependent Scattering by Particles: Part 1–Theoretical Investigation,” Journal of Heat Transfer 108(3), 608–661 (1986).

27. L. X. Ma, J. Y.Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” Journal of Quantitative Spectroscopy and Radiative Transfer 187, 255–266 (2017).

28. G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latexsphere suspensions and scattering powders,” Waves in Random Media 5(4), 413–426 (2006).

29. Zˇ. Ivezić, M. P. Mengüç, “An investigation of dependent/independent scattering regimes using a discrete dipole approximation,” International Journal of Heat and Mass Transfer 39(4), 811–822 (1996).

30. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Applied Optics 42(19), 4023–4030 (2003).

31. Refractive index database (accessed 1 December 2020). [https://refractiveindex.info/?shelf=main&book= TiO2&page=Devore-o].

32. C. Mätzler, MATLAB functions for Mie scattering and absorption, version 2, Bern, Switzerland (2002).

33. S. Prahl, Mie Scattering Calculator (accessed 1 December 2020). [https://omlc.org/calc/mie_calc.html].

34. Buffered Fiber Optics, Edmund Optics (accessed 1 December 2020). [http://www.edmundoptics.com/optics/fiber-optics/buffered-fiber-optics/2456].

35. E. Péry, W. C. P. M. Blondel, J. Didelon, A. Leroux, and F. Guillemin, “Simultaneous characterization of optical and rheological properties of carotid arteries via bimodal spectroscopy: Experimental and simulation results,” IEEE Transactions on Biomedical Engineering 56(5), 4760278, 1267–1276 (2009).

36. M. Hirokawa, T. Ogawa, H. Sugawara, S. Shokoku, and S. Sato, “Comparison of 1470 nm laser and radial 2ring fiber with 980 nm laser and bare-tip fiber in endovenous laser ablation of saphenous varicose veins: a multicenter, prospective, randomized, non-blind study,” Annals of Vascular Diseases 8(4), 282–289 (2015).

37. P. W. van Ruijven, A. A. Poluektova, M. J. C. van Gemert, H. A. M. Neumann, T. Nijsten, and C. W. M. van der Geld, “Optical-thermal mathematical model for endovenous laser ablation of varicose veins,” Lasers in Medical Science 29, 431–439 (2014).

38. S. Nozoea, N. Honda, K. Ishii, and K. Awazu, “Quantitative analysis of endovenous laser ablation based on human vein optical properties,” Proceedings of SPIE-OSA Biomedical Optics, 80921J (2011).

39. N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers in Medical Science 29, 453–479 (2014).

40. “Silica Glass (SiO2),” Crystran (accessed 1 December 2020). [https://www.crystran.co.uk/optical-materials/silica-glass-sio2].

41. K. Fujiwara, T. Maruyama, S. Nakamura, K. Nitta, and O. Matoba, “Measurement of scattering coefficient in PMMA with SiO2 particles by optical coherence tomography,” 17th Microoptics Conference (MOC' 11), 1–2 (2011).

42. Technical Note: Optical Materials, Newport Corporation (accessed 1 December 2020). [https://www.newport.com/n/optical-materials].






© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+