Flexible Computationally Efficient Platform for Simulating Scan Formation in Optical Coherence Tomography with Accounting for Arbitrary Motions of Scatterers

Alexey A. Zykov
Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia

Alexander L. Matveyev
Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia

Lev A. Matveev
Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia

Alexander A. Sovetsky
Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia

Vladimir Y. Zaitsev (Login required)
Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia


Paper #3408 received 4 Mar 2021; revised manuscript received 19 Mar 2021; accepted for publication 20 Mar 2021; published online 31 Mar 2021

DOI: 10.18287/JBPE21.07.010304

Abstract

A computationally efficient and fairly realistic model of OCT-scan formation in spectral-domain optical coherence tomography is described. The model is based on the approximation of discrete scatterers and ballistic character of scattering, these approximations being widely used in literature. An important feature of the model is its ability to easily account for arbitrary scatterer motions and computationally efficiently generate large sequences of OCT scans for gradually varying configurations of scatterers. This makes the proposed simulation platform very convenient for studies related to the development of angiographic processing of OCT scans for visualization of microcirculation of blood, as well as for studies of decorrelation of speckle patterns in OCT scans due to random (Brownian type) motions of scatterers. Examples demonstrating utilization of the proposed model for generation OCT scans imitating perfused vessels in biological tissues, as well as evolution of speckles in OCT scans due to random translational and rotational motions of localized (but not-point-like) scatterers are given. To the best of our knowledge, such numerical simulations of large series of OCT scans in the presence of various types of motion of scatterers have not been demonstrated before.

Keywords

OCT-scan formation; simulations of OCT scans; speckles in optical coherence tomography; optical coherence angiography; decorrelation of OCT scans

Full Text:

PDF

References


1. V. Yu. Zaitsev, V. M. Gelikonov, L. A. Matveev, G. V. Gelikonov, A. L. Matveyev, P. A. Shilyagin, and I. A. Vitkin, “Recent trends in multimodal optical coherence tomography. I. Polarization-sensitive OCT and conventional approaches to OCT elastography,” Radiophysics and Quantum Electronics 57(1), 52–66 (2014).

2. J. F. De Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography–a review,” Biomedical Optics Express 8(3), 1838–1873 (2017).

3. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Optics Letters 33(13), 1530–1532 (2008).

4. E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” Journal of biophotonics 4(9), 583–587 (2011).

5. C. L. Chen, R. K. Wang, “Optical coherence tomography based angiography,” Biomedical Optics Express 8(2), 1056–1082 (2017).

6. A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” Journal of Biophotonics 11, e201700292 (2018).

7. A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Scientific Reports 7(1), 1–10 (2017).

8. E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Scientific Reports 9(1), 1–13 (2019).

9. B. Blackburn, S. Gu, M. R. Ford, V. S. De Stefano, M. Jenkins, W. J. Dupps, and A. Rollins, “Phase-Decorrelation OCT for Noncontact Measurement of Biomechanical Effects of Corneal Crosslinking,” Investigative Ophthalmology & Visual Science 59(9), 745 (2018).

10. G. L. Monroy, P. Pande, R. L. Shelton, R. M. Nolan, D. R. Spillman Jr., R. G. Porter, M. A. Novak, and S. A. Boppart, “Non-invasive optical assessment of viscosity of middle ear effusions in otitis media,” Journal of Biophotonics 10(3), 394403 (2017).

11. K. V. Larin, D. D. Sampson, “Optical coherence elastography–OCT at work in tissue biomechanics,” Biomedical Optics Express 8(2), 1172–1202 (2017).

12. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, M. S. Hepburn, A. Mowla, and B. F. Kennedy, “Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances,” Journal of Biophotonics 14(2), e202000257 (2021).

13. A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Histological validation of in vivo assessment of cancer tissue inhomogeneity and automated morphological segmentation enabled by Optical Coherence Elastography,” Scientific Reports 10(1), 1–16 (2020).

14. E. V. Gubarkova, A. A. Sovetsky, V. Yu. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Yu. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomedical Optics Express 10(5), 2244–2263 (2019).

15. M. A. Sirotkina, E. V. Gubarkova, A. A. Plekhanov, A. A. Sovetsky, V. V. Elagin, A. L. Matveyev, L. A. Matveev, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “In vivo assessment of functional and morphological alterations in tumors under treatment using OCT-angiography combined with OCT-elastography,” Biomedical Optics Express 11(3), 1365–1382 (2020).

16. E. V. Gubarkova, E. B. Kiseleva, M. A. Sirotkina, D. A. Vorontsov, K. A. Achkasova, S. S. Kuznetsov, K. S. Yashin, A. L. Matveyev, A. A. Sovetsky, L. A. Matveev, A. A. Plekhanov, A. Y. Vorontsov, V. Y. Zaitsev, and N. D. Gladkova, “Diagnostic Accuracy of Cross-Polarization OCT and OCT-Elastography for Differentiation of Breast Cancer Subtypes: Comparative Study,” Diagnostics 10(12), 994 (2020).

17. L. A. Matveev, V. Yu. Zaitsev, G. V. Gelikonov, A. L. Matveyev, A. A. Moiseev, S. Yu. Ksenofontov, V. M. Gelikonov, M. A. Sirotkina, N. D. Gladkova, V. Demidov, and A. Vitkin, “Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans,” Optics Letters 40(7), 1472–1475 (2015).

18. A. Weatherbee, M. Sugita, K. Bizheva, I. Popov, and A. Vitkin, “Probability density function formalism for optical coherence tomography signal analysis: a controlled phantom study,” Optics Letters 41(12), 2727–2730 (2016).

19. H.-J. Lee, N. M. Samiudin, T. G. Lee, I. Doh, and S.-W. Lee, “Retina phantom for the evaluation of optical coherence tomography angiography based on microfluidic channels,” Biomedical Optics Express 10(11), 5535–5548 (2019).

20. G. Yao, L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Physics in Medicine & Biology 44(9), 2307 (1999).

21. M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Optics Express 18(21), 21714–21724 (2010).

22. A. Doronin, I. Meglinski, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomedical Optics Express 2(9), 2461–2469 (2011).

23. A. D. Buligin, Y. V. Kistenev, I. Meglinski, E. A. Danilkin, and D. A. Vrazhnov, “Imitation of ultra-sharp light focusing within turbid tissue-like scattering medium by using time-independent Helmholtz equation and method Monte Carlo,” SPIE Proceedings 11582, 115821N (2020).

24. A. D. Bulygin, D. A. Vrazhnov, E. S. Sim, I. Meglinski, and Y. V. Kistenev, “Imitation of optical coherence tomography images by wave Monte Carlo-based approach implemented with the Leontovich–Fock equation,” Optical Engineering 59(6), 061626 (2020).

25. A. Y. Potlov, S. V. Frolov, and S. G. Proskurin, “Numerical Simulation of Photon Migration in Homogeneous and Inhomogeneous Cylindrical Phantoms,” Optics and Spectroscopy 128(6), 835–842 (2020).

26. J.M. Schmitt, A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” Journal of the Optical Society of America A 14(6), 1231–1242 (1997).

27. L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomedical Optics Express 5(9), 2913–2930 (2014).

28. P. R. Munro, “Three-dimensional full wave model of image formation in optical coherence tomography,” Optics Express 24(23), 27016–27031 (2016).

29. P. R. Munro, A. Curatolo and D. D. Sampson, “Full wave model of image formation in optical coherence tomography applicable to general samples,” Optics Express 23(3), 2541–2556 (2015).

30. M. Almasian, T. G. van Leeuwen, and D. J. Faber, “OCT Amplitude and Speckle Statistics of Discrete Random Media,” Scientific Reports 7, 14873 (2017).

31. J. Kalkman, “Fourier-Domain Optical Coherence Tomography Signal Analysis and Numerical Modeling,” International Journal of Optics 2017, 9586067 (2017).

32. V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, G. V. Gelikonov, and V. M. Gelikonov, “A model for simulating speckle-pattern evolution based on close to reality procedures used in spectral-domain OCT,” Laser Physics Letters 11(10), 105601 (2014).

33. A. L. Matveyev, L. A. Matveev, A. A. Moiseev, A. A. Sovetsky, G. V. Gelikonov, and V. Y. Zaitsev, “Semianalytical full-wave model for simulations of scans in optical coherence tomography with accounting for beam focusing and the motion of scatterers,” Laser Physics Letters 16(8), 085601 (2019).

34. A. L. Matveyev, L. A Matveev, A. A. Moiseev, A. A. Sovetsky, G. V. Gelikonov, and V. Y. Zaitsev, “Computationally efficient model of OCT scan formation by focused beams and its usage to demonstrate a novel principle of OCT-angiography,” Laser Physics Letters 17(11), 115604 (2020).

35. A. Abdurashitov, V. Tuchin, “A robust model of an OCT signal in a spectral domain,” Laser Physics Letters 15(8), 086201 (2018).

36. X. Cheng, Y. Li, J. Mertz, S. Sakadžić, A. Devor, D. A. Boas, and L. Tian, “Development of a beam propagation method to simulate the point spread function degradation in scattering media,” Optics Letters 44(20), 4989–4992 (2019).

37. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, V. M. Gelikonov, and A. Vitkin, “Deformation induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography,” Journal of Biomedical Optics 20(7), 075006 (2015).

38. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” Journal of Biophotonics 9(5), 499–509 (2016).

39. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” Journal of Biomedical Optics 21(11), 116005 (2016).

40. A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Physics Letters 15(6), 065603 (2018).

41. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” Journal of Innovative Optical Health Sciences 10(06), 1742006 (2017).

42. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. I. Omelchenko, D. V. Shabanov, O. I. Baum, V. M. Svistushkin, and E. N. Sobol, “Optical coherence tomography for visualizing transient strains and measuring large deformations in laser-induced tissue reshaping,” Laser Physics Letters 13(11), 115603 (2016).

43. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. I. Omelchenko, O. I. Baum, S. E. Avetisov, A. V. Bolshunov, V. I. Siplivy, D. V. Shabanov, A. Vitkin, and E. N. Sobol, “Optical coherence elastography for strain dynamics measurements in laser correction of cornea shape,” Journal of Biophotonics 10(11), 1450–1463 (2017).

44. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” Journal of Biophotonics 12(3), e201800250 (2019).

45. D. D. Postnov, J. Tang, S. E. Erdener, K. Kılıç, and D. A. Boas, “Dynamic light scattering imaging,” Science Advances 6(45), eabc4628 (2020).

46. V. Y. Zaitsev, I. A. Vitkin, L. A. Matveev, V. M. Gelikonov, A. L. Matveyev, and G. V. Gelikonov, “Recent trends in multimodal optical coherence tomography. II. The correlation-stability approach in OCT elastography and methods for visualization of microcirculation,” Radiophysics and Quantum Electronics 57(3), 210–225 (2014).

47. N. Uribe-Patarroyo, M. Villiger, and B. E. Bouma, “Quantitative technique for robust and noise-tolerant speed measurements based on speckle decorrelation in optical coherence tomography,” Optics Express 22(20), 24411–24429 (2014).

48. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Optics Express 20(4), 4710–4725 (2012).

49. I. Popov, A. S. Weatherbee, and I. A. Vitkin, “Dynamic light scattering arising from flowing Brownian particles: analytical model in optical coherence tomography conditions,” Journal of Biomedical Optics 19(12), 127004 (2014).

50. H. Ullah, A. Mariampillai, M. Ikram, and I. A. Vitkin, “Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood?” Laser Physics 21(11), 1962–1971 (2011).






© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+