Optical Signature Analysis of Liver Ablation Stages Exploiting Spatio-Spectral Imaging

Mohamed H. Aref orcid (Login required)
Biomedical Engineering Department, Military Technical College, Cairo, Egypt

Ramy Abdlaty orcid
Biomedical Engineering Department, Military Technical College, Cairo, Egypt

Mohamed Abbass orcid
Biomedical Engineering Department, Military Technical College, Cairo, Egypt

Ibrahim H. Aboughaleb orcid
Biomedical Engineering Researcher, Egyptian armed forces, Cairo, Egypt

Ayman A. Nassar orcid
Biomedical Engineering Researcher, Egyptian armed forces, Cairo, Egypt

Abou-Bakr M. Youssef
System & Biomedical Engineering Department, Cairo University, Giza, Egypt

Paper #3412 received 29 Mar 2021; revised manuscript received 19 Jun 2021; accepted for publication 21 Jun 2021; published online 29 Jun 2021.

DOI: 10.18287/JBPE21.07.020306


Background and Objective: Thermal ablation modalities such as Radiofrequency ablation (RFA) / Microwave ablation (MWA) are deliberately used for marginally invasive tumor removal by escalating tissue temperature. For precise tumor extinguish, thermal ablation outcomes need routine monitoring for tissue necrosis in a challenging research task. The study aims to exploit hyperspectral imaging (HSI) to evaluate the impact of the liver tissue ablation. Materials and Methods: RFA with temperature range (≥80 °C) was accomplished on the ex vivo animal liver and evaluated using a spectral camera (400~1000 nm). The spectral signatures were extracted from the HSI data after the following processing steps: capturing three spectral data cubes for each liver sample with total 7-samples (before ablation, after ablation, and after ablation with sample slicing) using an HSI optical configuration. The custom HSI processing comprises “Top-hat and Bottom-hat transform” combined with “watershed transform” image segmentation to increase the intensity for a region of interest (ROI) of the investigated tissue, linking spectral and spatial data. Additionally, statistical analysis for HSI data was performed to exclusively select the best spectral band that discriminates between the normal, thermally-damaged, and ablated liver regions. Results: The variation of the optical parameters for the investigated liver samples provides variable interaction with the light diffuse reflection (Ŗd) over the spectrum range (400~1000 nm). Where, the extracting spectral information of the various tissue zones from the induced RFA linked to the hemoglobin, methemoglobin, and water permits variations. The generated spectral image after image enhancement utilizing “Top-hat and Bottom-hat transform” followed by “watershed segmentation”, showed high contrast between normal and thermal regions at a wavelength (600 nm). However, the wavelength (900 nm) shows a high variance between the normal and ablated regions. Finally, delineation of the thermal and ablated regions on the complemented enhanced image. Conclusion: HSI is considered a promising optical noninvasive technique for monitoring the RFA toward enhancing the ablation-based treatment for liver tumor outcomes.


liver cancer; hyperspectral imaging; radiofrequency ablation; thermal damage; top-hat and bottom-hat transform; watershed segmentation

Full Text:

PDF Appendix


1. S. Morini, G. Carpino, S. Carotti, and E. Gaudio, “Anatomy and Embryology of the Liver,” Chapter in Liver Diseases, F. Radu-Ionita, N. T. Pyrsopoulos, M. Jinga, I. C. Tintoiu, Z. Sun, and E. Bontas (Eds.), Springer International Publishing, Cham, 3–16 (2020).

2. M. W. Robinson, C. Harmon, and C. O. Farrelly, “Liver immunology and its role in in fl ammation and homeostasis,” Cellular & Molecular Immunology 13, 267–276 (2016).

3. C. Review, “Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability- Adjusted Life-years for 32 Cancer Groups, 1990 to 2015 A Systematic Analysis for the Global Burden of Disease Study,” JAMA Oncology 3(4), 524–548 (2017).

4. J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” International Journal of Cancer 127(12), 2893–2917 (2010).

5. Y. F. Liaw, “Antiviral therapy of chronic hepatitis B: Opportunities and challenges in Asia,” Journal of Hepatology 51(2), 403–410 (2009).

6. P. Ferenci, M. Fried, D. Labrecque, J. Bruix, M. Sherman, M. Omata, J. Heathcote, T. Piratsivuth, M. Kew, J. A. Otegbayo, S. S. Zheng, S. Sarin, S. S. Hamid, S. B. Modawi, W. Fleig, S. Fedail, A. Thomson, A. Khan, P. Malfertheiner, G. Lau, F. J. Carillo, J. Krabshuis, and A. Le Mair, “Hepatocellular carcinoma (HCC): A global perspective,” Journal of Clinical Gastroenterology 44(4) 239–245 (2010).

7. S. Abd-Elsalam, N. Elwan, H. Soliman, D. Ziada, W. Elkhalawany, M. Salama, N. Hawash, M. Arafa, R. Badawi, and W. M. Shehata, “Epidemiology of liver cancer in Nile delta over a decade: A single-center study,” South Asian Journal of Cancer 7(1), 24 (2018).

8. T. Hennedige, S. K. Venkatesh, “Imaging of hepatocellular carcinoma: diagnosis, staging and treatment monitoring,” Cancer Imaging 12(3), 530 (2012).

9. T. Longerich, K. Breuhahn, and P. Schirmacher, “Molecular pathology of liver tumors,” in Molecular Surgical Pathology, L. Cheng, J. Eble (Eds), Springer, New York, NY, 43–63 (2013). ISBN: 978-1-4614-4899-0.

10. J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, and F. Bray, “Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012,” International Journal of Cancer 136(5), E359–E386 (2015).

11. W. M. Rashed, M. A. M. Kandeil, M. O. Mahmoud, and S. Ezzat, “Hepatocellular Carcinoma (HCC) in Egypt: A comprehensive overview,” Journal of the Egyptian National Cancer Institute 32(1), 1–11 (2020).

12. M. J. Englesbe, S. P. Patel, K. He, R. J. Lynch, D. E. Schaubel, C. Harbaugh, S. A. Holcombe, S. C. Wang, D. L. Segev, and C. J. Sonnenday, “Sarcopenia and mortality after liver transplantation,” Journal of the American College of Surgeons 211(2), 271–278 (2010).

13. H. Liao, “Integrated diagnostic and therapeutic techniques: Toward an intelligent medical system,” Computerized Medical Imaging and Graphics:The Official Journal of the Computerized Medical Imaging Society 38(5), 421 (2014).

14. N. Sanai, M.-Y. Polley, M. W. McDermott, A. T. Parsa, and M. S. Berger, “An extent of resection threshold for newly diagnosed glioblastomas,” Journal of Neurosurgery 115, 3–8 (2011).

15. B. K. P. Goh, J.-Y. Teo, C.-Y. Chan, S.-Y. Lee, P.-C. Cheow, P. K. H. Chow, L. L. P. J. Ooi, and A. Y. F. Chung, “Evolution of laparoscopic liver resection at Singapore General Hospital: a nine-year experience of 195 consecutive resections,” Singapore Medical Journal 58(12), 708 (2017).

16. A. Forner, M. Gilabert, J. Bruix, and J. L. Raoul, “Treatment of intermediate-stage hepatocellular carcinoma,” Nature Reviews Clinical Oncology 11, 525–535 (2014).

17. E. Tanis, J. W. Spliethoff, D. J. Evers, and G. C. Langhout, “Real-time in vivo assessment of radiofrequency ablation of human colorectal liver metastases using diffuse reflectance spectroscopy,” European Journal of Surgical Oncology 42(2), 251–259 (2020).

18. T. Livraghi, H. Mäkisalo, and P. Line, “Treatment options in hepatocellular carcinoma today,” Scandinavian Journal of Surgery 100(1), 22–29 (2011).

19. S. G. Nour, “MRI-Guided Laser Ablation of Liver Tumors,” in Primary and Metastatic Liver Tumors, K. Cardona, S. Maithel (Eds), Springer, Cham, 323–332 (2018).

20. G. Giuseppe, D. Costanzo, C. Hospital, and M. Guarracino, Image-guided Laser Ablation, Springer, Cham (2020). ISBN: 978-3-030-21747-1.

21. C. L. Brace, Microwave tissue ablation: Biophysics, technology, and applications, Critical Reviews in Biomedical Engineering 38(1), 65–78 (2010).

22. B. Imene, B. Farid, and B. Khaoula, “CT-guided microwave liver tumors ablation and automatic adjustment of frequency,” Averroes European Medical Journal 2(1), (2018).

23. J. Macdonell, N. Patel, S. Rubino, G. Ghoshal, G. Fischer, E.C. Burdette, R. Hwang, and J. G. Pilitsis, “Magnetic resonance–guided interstitial high-intensity focused ultrasound for brain tumor ablation,” 44(2), 1–6 (2018).

24. H. Zhi-Yu, L. Ping, Y. Xiao-Ling, C. Zhi-Gang, L. Fang-Yi, and Y. Jie, “A clinical study of thermal monitoring techniques of ultrasound-guided microwave ablation for hepatocellular carcinoma in high-risk locations,” Scientific Reports 7, 41246 (2017).

25. H. Takahashi, M. Akyuz, E. Aksoy, K. Karabulut, and Eren Berber, “Local recurrence after laparoscopic radiofrequency ablation of malignant liver tumors : Results of a contemporary series,” Journal of Surgical Oncology 115(7), 830–834 (2017).

26. T. R. Fosnight, F. M. Hooi, R. D. Keil, A. P. Ross, S. Subramanian, T. G. Akinyi, J. K. Killin, P. G. Barthe, S. M. Rudich, S. A. Ahmad, M. B. Rao, and T. G. Mast, “Echo decorrelation imaging of rabbit liver and VX2 tumor during in vivo ultrasound ablation,” Ultrasound in Medicine & Biology 43(1), 176–186 (2017).

27. T. J. Vogl, A. Dommermuth, B. Heinle, N.-E. A. Nour-Eldin, T. Lehnert, K. Eichler, S. Zangos, W. O. Bechstein, and N. N. N. Naguib, “Colorectal Cancer Liver Metastases: Long-Term Survival and Progression-Free Survival After Thermal Ablation Using Magnetic Resonance–Guided Laser-Induced Interstitial Thermotherapy in 594 Patients Analysis of Prognostic Factors,” Investigative Radiology 49(1), 48–56 (2014).

28. J. Paul, T. J. Vogl, and A. Chacko, “Dual energy computed tomography thermometry during hepatic microwave ablation in an ex-vivo porcine model,” Physica Medica 31(7), 683–691 (2015).

29. M. De Landro, J. Ianniello, M. Yon, A. Wolf, B. Quesson, E. Schena, and P. Saccomandi, “Fiber bragg grating sensors for performance evaluation of fast magnetic resonance thermometry on synthetic phantom,” Sensors 20(22), 1–17 (2020).

30. L. Feng, S. Zhu, F. Liu, Y. He, Y. Bao, and C. Zhang, “Hyperspectral imaging for seed quality and safety inspection: A review,” Plant Methods 15, 91 (2019).

31. P. Martín-Mateos, F. U. Khan, and O. E. Bonilla-Manrique, “Direct hyperspectral dual-comb imaging,” Optica 7(3), 199–202 (2020).

32. R. Abdlaty, Q. Fang, “Acousto-optic tunable filter-based hyperspectral imaging system characterization,” SPIE Proceeding 10870, 108700Y (2019).

33. M. A. Calin, A. C. Calin, and D. N. Nicolae, “Application of airborne and spaceborne hyperspectral imaging techniques for atmospheric research: past, present, and future,” Applied Spectroscopy Reviews 56(4), 1–35 (2020).

34. G. Polder, A. Gowen, The hype in spectral imaging, Journal of Spectral Imaging 9, (2020).

35. D. Inamdar, M. Kalacska, G. Leblanc, and J. P. Arroyo-Mora, “Characterizing and mitigating sensor generated spatial correlations in airborne hyperspectral imaging data,” Remote Sensing 12(4), 641 (2020).

36. X. Jin, H. Memon, W. Tian, Q. Yin, X. Zhan, and C. Zhu, “Spectral characterization and discrimination of synthetic fibers with near-infrared hyperspectral imaging system,” Applied Optics 56(12), 3570–3576 (2017).

37. E. Bonah, X. Huang, J. H. Aheto, and R. Osae, “Application of hyperspectral imaging as a nondestructive technique for foodborne pathogen detection and characterization,” Foodborne Pathogens and Disease 16(10), 712–722 (2019).

38. M. L. Pieper, D. Manolakis, E. Truslow, T. W. Cooley, M. Brueggeman, J. Jacobson, and A. Weisner, “Performance limitations of temperature–emissivity separation techniques in long-wave infrared hyperspectral imaging applications,” Optical Engineering 56(8), 81804 (2017).

39. J. Deal, S. Mayes, C. Browning, S. Hill, P. Rider, C. Boudreaux, T. C. Rich, and S. J. Leavesley, “Identifying molecular contributors to autofluorescence of neoplastic and normal colon sections using excitation-scanning hyperspectral imaging,” Journal of Biomedical Optics 24(2), 021207 (2018).

40. M. De Landro, I.E. García-Molina, M. Barberio, E. Felli, V. Agnus, M. Pizzicannella, M. Diana, E. Zappa, and P. Saccomandi, “Hyperspectral Imagery for Assessing Laser-Induced Thermal State Change in Liver,” Sensors 21(2), 643 (2021).

41. M. De Landro, M. Barberio, E. Felli, V. Agnus, M. Pizzicannella, M. DIana, and P. Saccomandi, “Hyperspectral imaging system for monitoring laser-induced thermal damage in gastric mucosa,” In 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 1–6 (2020).

42. R. Abdlaty, J. Haywar, T. Farrell, and Q. Fang, “Skin Erythema and Pigmentation Optical Assessment Techniques,” Photodiagnosis and Photodynamic Therapy 33, 102127 (2020).

43. M. H. Aref, I. H. Aboughaleb, and Y. H. El-Sharkawy, “Custom optical imaging system for ex-vivo breast cancer detection based on spectral signature,” Surgical Oncology 35, 547–555 (2020).

44. M. H. Aref, A. M. Youssef, I. H. Aboughaleb, and Y. H. El-sharkawy, “Characterization of Normal and Malignant Breast Tissues utilizing Hyperspectral Images and Associated Differential Spectrum Algorithm,” Journal of Biomedical Photonics & Engineering 7(2), 020302 (2021).

45. I. H. Aboughaleb, M. H. Aref, and Y. H. El-Sharkawy, “Hyperspectral imaging for diagnosis and detection of ex-vivo breast cancer,” Photodiagnosis and Photodynamic Therapy 31, 101922 (2020).

46. M. Aref, I. H. Aboughaleb, A.-B. Youssef, and Y. El-Sharkawy, “Novel Approach Exploiting the Hyperspectral Imaging System for Breast Cancer Therapy and Diagnosis,” Archives of Breast Cancer 7(4), 189–201 (2020).

47. S. Ortega, M. Halicek, H. Fabelo, R. Camacho, M. d. l. L. Plaza, F. Godtliebsen, G. M. Callicó, and B. Fei, “Hyperspectral Imaging for the Detection of Glioblastoma Tumor Cells in H&E Slides Using Convolutional Neural Networks,” Sensors 20, 1911 (2020).

48. H. Fabelo, S. Ortega, R. Lazcano, D. Madroñal, G. M. Callicó, E. Juárez, R. Salvador, D. Bulters, H. Bulstrode, A. Szolna, J. F. Piñeiro, C. Sosa, A. J. O’Shanahan, S. Bisshopp, M. Hernández, J. Morera, D. Ravi, B. R. Kiran, A. Vega, A. Báez-Quevedo, G.-Z. Yang, B. Stanciulescu, and R. Sarmiento, “An Intraoperative Visualization System Using Hyperspectral Imaging to Aid in Brain,” Sensors 18(2), 430 (2018).

49. M. H. Fouad Aref, A. A. R. Sharawi, and Y. H. El-Sharkawy, “Delineation of the Arm Blood Vessels Utilizing Hyperspectral Imaging to Assist with Phlebotomy for Exploiting the Cutaneous Tissue Oxygen Concentration,” Photodiagnosis and Photodynamic Therapy 33, 102190 (2021).

50. P.-C. Chen, W.-C. Lin, “Spectral-profile-based algorithm for hemoglobin oxygen saturation determination from diffuse reflectance spectra,” Biomedical Optics Express 2(5), 1082–1096 (2011).

51. M. W. Wukitsch, “Pulse oximetry: Historical review and Ohmeda functional analysis,” International Journal of Clinical Monitoring and Computing 4, 161–166 (1987).

52. V. Tuchin, “Tissue Optics and Photonics: Light-Tissue Interaction II,” Journal of Biomedical Photonics & Engineering 2(3), 030201 (2016).

53. V. V Tuchin, “Tissue Optics and Photonics: Biological Tissue Structures,” Journal of Biomedical Photonics & Engineering 1(1), 3–21 (2015).

54. M. H. Aref, “Biomedical Research and Clinical Reviews,” Biomedical Research and Clinical Reviews 1, 1–13 (2020).

55. M. H. Aref, I. H. Aboughaleb, and Y. H. El-sharkawy, “Photodiagnosis and Photodynamic Therapy Tissue characterization utilizing hyperspectral imaging for liver thermal ablation,” Photodiagnosis and Photodynamic Therapy 31, 101899 (2020).

56. M. H. Aref, I. H. Aboughaleb, A.-B. M. Youssef, and Y. H. El-Sharkawy, “Hyperspectral image-based analysis of thermal damage for ex-vivo bovine liver utilizing radiofrequency ablation,” Surgical Oncology 38, 101564 (2021).

57. A. Robles-Kelly, C. P. Huynh (Eds.), Imaging Spectroscopy for Scene Analysis, Springer, London (2013). ISBN: 978-1-4471-4652-0.

58. J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data analysis and future challenges,” IEEE Geoscience and remote sensing magazine 1(2), 6–36 (2013).

59. T. Adão, J. Hruška, L. Pádua, J. Bessa, E. Peres, R. Morais, and J. J. Sousa, “Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry,” Remote Sensing 9(11), 1110 (2017).

60. S. S. M. Noor, K. Michael, S. Marshall, and J. Ren, “Hyperspectral image enhancement and mixture deep-learning classification of corneal epithelium injuries,” Sensors 17(11), 2644 (2017).

61. N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Image Segmentation Using K-means Clustering Algorithm and Subtractive Clustering Algorithm,” Procedia Computer Science 54, 764–771 (2015).

62. A. Janßen, P. Wan, “k-means clustering of extremes,” Electronic Journal of Statistics 14(1), 1211–1233 (2020)

63. A. Badawi, M. Bilal, “High-level synthesis of online k-means clustering hardware for a real-time image processing pipeline,” Journal of Imaging 5(3), 38 (2019).

64. A. Gulhane, P. L. Paikrao, and D. S. Chaudhari, “A Review of Image Data Clustering Techniques,” International Journal of Soft Computing and Engineering 2(1), 212-215 (2019).

65. M. A. Hamdi, “Modified Algorithm marker-controlled watershed transform for Image segmentation Based on Curvelet Threshold,” Canadian Journal on Image Processing and Computer Vision 2(8), 88–91 (2008).

66. S. Derivaux, G. Forestier, C. Wemmert, and S. Lefèvre, “Supervised image segmentation using watershed transform, fuzzy classification and evolutionary computation,” Pattern Recognition Letters 31(15), 2364–2374 (2010).

67. Y. Zhao, J. Liu, H. Li, and G. Li, “Improved Watershed Algorithm for Dowels Image Segmentation,” In 2008 7th World Congress on Intelligent Control and Automation, 7644–7648 (2008).

68. X. Fengying, J. Zhiguo, and Z. Fugen, “Immune cell image segmentation based on mathematical morphology,” Journal of Image and Graphics 7(11), 1119–1122 (2002).

69. H. P. Ng, S. H. Ong, K. W. C. Foong, P. S. Goh, and W. L. Nowinski, “Medical Image Segmentation Using K-Means Clustering and Improved Watershed Algorithm,” 2006 IEEE Southwest Symposium on Image Analysis and Interpretation, 61–65 (2006).

70. S. Liu, L. Zeng, B. Liu, and Y. Fang, “Separating Algorithm for Overlapping Granule Images,” Computer Engineering 28(2), 198–199 (2002).

71. X. Yang, S. Zhan, D. Xie, H. Zhao, and T. Kurihara, “Hierarchical prostate MRI segmentation via level set clustering with shape prior,” Neurocomputing 257, 154–163 (2017).

72. J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters,” Journal of Cybernetics 3(3), 32–57 (1973).

73. C. Kalyani, K. Ramudu, and G. R. Reddy, “A review on optimized k-means and FCM clustering techniques for biomedical image segmentation using level set formulation,” Biomedical Research 29(20), 3660–3668 (2018).

74. V. Kumar, P. Gupta, “Importance of Statistical Measures in Digital Image Processing,” International Journal of Emerging Technology and Advanced Engineering 2(8), 56–62 (2012).

75. H. Wu, L. R. Wilkins, N. P. Ziats, J. R. Haaga, and A. A. Exner, “Real-time monitoring of radiofrequency ablation and postablation assessment: Accuracy of contrast-enhanced US in experimental Rat liver model,” Radiology 270(1), 107–116 (2014).

76. P. Wiggermann, K. Brünn, J. Rennert, M. Loss, H. Wobser, A. G. Schreyer, C. Stroszczynski, and E. M. Jung, “Monitoring during hepatic radiofrequency ablation (RFA): Comparison of real-time ultrasound elastography (RTE) and contrast-enhanced ultrasound (CEUS): First clinical results of 25 patients,” Ultraschall in der Medizin-European Journal of Ultrasound 34(06), 590–594 (2013).

77. Y. Z. Zhang, T. Xu, H. Y. Gong, C. Y. Li, X. H. Ye, H. J. Lin, M. P. Shen, Y. Duan, T. Yang, and X. H. Wu, “Application of high-resolution ultrasound, real-time elastography, and contrast-enhanced ultrasound in differentiating solid thyroid nodules,” Medicine 95(45), e5329 (2016).

78. S. Swierczynski, F. Primavesi, E. Klieser, T. Kiesslich, T. Jäger, R. Illig, D. Neureiter, D. Ofner, and S. Stättner, “382. Thermographic monitoring of radiofrequency and microwave ablation in a perfused porcine liver model,” European Journal of Surgical Oncology 40(11), S147 (2014).

© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+