Optical Biopsy of Amelanotic Melanoma with Raman and Autofluorescence Spectra Stimulated by 785 nm Laser Excitation

Ivan A. Bratchenko
Samara National Research University, Russia

Yulia A. Khristoforova (Login required)
Samara National Research University, Russia

Lyudmila A. Bratchenko
Samara National Research University, Russia

Alexander A. Moryatov
Samara State Medical University, Russia

Sergey V. Kozlov
Samara State Medical University, Russia

Ekaterina G. Borisova
Bulgarian Academy of Sciences, Sofia, Bulgaria

Valery P. Zakharov
Samara National Research University, Russia

Paper #3415 received 13 Apr 2021; revised manuscript received 22 Jun 2021; accepted for publication 25 Jun 2021; published online 30 Jun 2021.

DOI: 10.18287/JBPE21.07.020308


In this work, Raman and autofluorescence spectroscopy in the near-infrared region has been used for examining amelanotic melanoma as the most dangerous type of malignant melanoma. There were 9 patients with amelanotic melanoma, 60 with pigmented melanoma and 120 with basal cell carcinoma enrolled in this study. We studied 9 amelanotic melanoma cases to differentiate them from basal cell carcinoma (n = 120) and pigmented malignant melanoma (n = 60) using portable spectroscopy setup with laser excitation source at 785 nm and low-cost spectrometer. The spectra of the different tumor type were classified using projection on the latent structure analysis with 10-Fold cross-validation. The results of the tumor classification were presented using box-plot diagrams and ROC analysis. We obtained 0.53 and 0.88 ROC AUCs for distinguishing amelanotic melanoma versus (1) pigmented melanoma and (2) basal cell carcinoma respectively based on the joint autofluorescence and Raman spectroscopy analysis that allowed one to diagnose amelanotic melanoma as true melanoma but no basal cell carcinoma.


Raman spectroscopy; autofluorescence; optical biopsy; projection on the latent structure analysis; PLS; amelanotic melanoma; basal cell carcinoma; skin cancer

Full Text:



1. Global Cancer Observatory, Cancer Fact Sheets: Skin, 2020 (accessed 11 January 2021) [https://gco.iarc.fr/today/fact-sheets-cancers].

2. L. Gualandri, R. Betti, and C. Crosti, “Clinical features of 36 cases of amelanotic melanomas and considerations about the relationship between histologic subtypes and diagnostic delay,” Journal of the European Academy of Dermatology and Venereology 23(3), 283–287 (2009).

3. W. L. Cheung, R. R. Patel, A. Leonard, B. Firoz, and S. A. Meehan, “Amelanotic melanoma: a detailed morphologic analysis with clinicopathologic correlation of 75 cases,” Journal of Cutaneous Pathology 39(1), 33–39 (2012).

4. K. I. Zaytsev, K. G. Kudrin, V. E. Karasik, I. V. Reshetov, and S. O. Yurchenko, “In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia,” Applied Physics Letters 106(5), 053702 (2015).

5. E. Borisova, T. Genova, V. Mircheva, P. Troyanova, I. Bratchenko, L. Bratchenko, Y. Khristoforova, V. Zakharov, I. Lihacova, A. Lihacovs, and J. Spigulis, “Multispectral fluorescence detection of pigmented cutaneous tumours,” SPIE Proceedings 11585, 1158504 (2020).

6. I. A. Bratchenko, L. A. Bratchenko, A. A. Moryatov, Y. A. Khristoforova, D. N. Artemyev, O. O. Myakinin, A. E. Orlov, S. V. Kozlov, and V. P. Zakharov, “In vivo diagnosis of skin cancer with a portable Raman spectroscopic device,” Experimental Dermatology 30(5), 652–663 (2021).

7. E. Cordero, I. Latka, C. Matthäus, I. W. Schie, and J. Popp, “In-vivo Raman spectroscopy: from basics to applications,” Journal of Biomedical Optics 23(7), 071210 (2018).

8. L. A. Bratchenko, Y. A. Khristoforova, A. A. Morytatov, and I. A. Bratchenko, “Raman spectroscopy based diagnosis of dermatofibrosarcoma protuberans: Case report,” Photodiagnosis and Photodynamic Therapy 35, 102351 (2021).

9. B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” Journal of Biomedical Optics 10(6), 064020 (2005).

10. E. Borisova, E. Nikolova, P. Troyanova, and L. Avramov, “Autofluorescence and diffuse reflectance spectroscopy of pigment disorders in human skin”, Journal of Optoelectronics and Advanced Materials 10(3), 717–722 (2008).

11. H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman Spectroscopy for In Vivo Skin Cancer Diagnosis,” Cancer Research 72(10), 2491–2500 (2012).

12. E. G. Borisova, I. A. Bratchenko, Y. A. Khristoforova, L. A. Bratchenko, T. I. Genova, A. I. Gisbrecht, A. A. Moryatov, S. V. Kozlov, P. P. Troyanova, and V. P. Zakharov, “Near-infrared autofluorescence spectroscopy of pigmented benign and malignant skin lesions,” Optical Engineering 59(6), 061616 (2020)

13. E. Borisova, A. Gisbrecht, T. Genova-Hristova, P. Troyanova, E. Pavlova, N. Penkov, I. Bratchenko, V. Zakharov, I. Lihachova, I. Kuzmina, and J. Spigulis, “Multispectral autoflourescence detection of skin neoplasia using steady-state techniques,” SPIE Proceeding 11047, 1104704 (2019).

14. I. P. Santos, R. van Doorn, P. J. Caspers, T. C. B. Schut, E. M. Barroso, T. E. Nijsten, V. N. Hegt, S. Koljenovic, and G. J. Puppels, “Improving clinical diagnosis of early-stage cutaneous melanoma based on Raman spectroscopy,” British Journal of Cancer 119(11), 1339–1346 (2018).

15. D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Analytical chemistry 60(11), 1193–1202 (1988).

16. S. Kucheryavskiy, “Mdatools: Multivariate Data Analysis for Chemometrics,” R Package, version 0.9.4 (2019) [https://mdatools.com/].

17. I. Giovannacci, C. Magnoni, P. Vescovi, A. Painelli, E. Tarentini, and M. Meleti, “Which are the main fluorophores in skin and oral mucosa? A review with emphasis on clinical applications of tissue autofluorescence,” Archives of Oral Biology 105, 89–98 (2019).

18. B. P. Yakimov, E. A. Shirshin, J. Schleusener, A. S. Allenova, V. V. Fadeev, and M. E. Darvin, “Melanin distribution from the dermal–epidermal junction to the stratum corneum: non-invasive in vivo assessment by fluorescence and Raman microspectroscopy,” Scientific Reports 10(1), 14374 (2020).

19. M. Beyeler, R. Dummer, “Cutaneous melanoma: uncommon presentations,” Clinics in Dermatology 23(6), 587–592 (2005).

20. M. Mascolo, D. Russo, M. Scalvenzi, S. Varricchio, and S. Staibano, “Pitfalls in the dermoscopic diagnosis of amelanotic melanoma,” Journal of the American Academy of Dermatology 72(1), S2–S3 (2015).

21. H. Z. Gong, H. Y. Zheng, and J. Li, “Amelanotic melanoma,” Melanoma Research 29(3), 221–230 (2019).

22. A. Detrixhe, F. Libon, M. Mansuy, N. Nikkels-Tassoudji, A. Rorive, J. E. Arrese, P. Quatresooz, M.-A. Reginster, and A. F. Nikkels, “Melanoma masquerading as nonmelanocytic lesions,” Melanoma Research 26(6), 631–634 (2016).

© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+