Influence of Melanin Content on Laser Doppler Flowmetry and Tissue Reflectance Oximetry Signal Formation

Viktor Dremin orcid (Login required)
Research and Development Center of Biomedical Photonics, Orel State University, Russia
College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham, UK

Nadezhda Golubova
Research and Development Center of Biomedical Photonics, Orel State University, Russia

Elena Potapova
Research and Development Center of Biomedical Photonics, Orel State University, Russia

Andrey Dunaev
Research and Development Center of Biomedical Photonics, Orel State University, Russia

Paper #3452 received 15 Aug 2021; revised manuscript received 5 Oct 2021; accepted for publication 11 Oct 2021; published online 5 Nov 2021.

DOI: 10.18287/JBPE21.07.040306


The article presents the results of studies of the melanin effect on recorded signals in laser Doppler flowmetry (LDF) and tissue reflectance oximetry (TO). By investigating the properties of recorded microvascular blood flow and skin oxygenation signals, we have gained new knowledge about race-related differences in the formation of these signals. The effect of the skin melanin content on the intensity of the recorded signals in the LDF and TO methods was evaluated, and the limitations in the use of these methods in representatives of different ethnic groups were shown.


laser Doppler flowmetry; blood perfusion; tissue reflectance oximetry; tissue oxygen saturation; melanin

Full Text:



1. R. Bonner, R. Nossal, “Principles of laser-Doppler flowmetry,” in Laser-Doppler blood flowmetry. Developments in Cardiovascular Medicine, A. P. Shepherd, P. A. Öberg (Eds.), Springer, Boston, 17–45 (1990). ISBN: 978-1-4757-2083-9.

2. V. Dremin, E. A. Zherebtsov, I. N. Makovik, I. O. Kozlov, V. V. Sidorov, A. I. Krupatkin, A. V. Dunaev, I. E. Rafailov, K. S. Litvinova, S. G. Sokolovski, and E. U. Rafailov, “Laser Doppler flowmetry in blood and lymph monitoring, technical aspects and analysis,” Proceedings of SPIE 10063, 1006303 (2017).

3. A. I. Zherebtsova, V. V. Dremin, I. N. Makovik, E. A. Zherebtsov, A. V. Dunaev, A. Goltsov, S. G. Sokolovski, and E. U. Rafailov, “Multimodal optical diagnostics of the microhaemodynamics in upper and lower limbs,” Frontiers in Physiology 10, 416 (2018).

4. I. Makovik, A. V. Dunaev, V. V. Dremin, A. I. Krupatkin, V. V. Sidorov, L. S. Khakhicheva, V. F. Muradyan, O. V. Pilipenko, I. E. Rafailov, and K. S. Litvinova, “Detection of angiospastic disorders in the microcirculatory bed using laser diagnostics technologies,” Journal of Innovative Optical Health Sciences 11(01), 1750016 (2018).

5. K. Kandurova, V. Dremin, E. Zherebtsov, E. Potapova, A. Alyanov, A. Mamoshin, Y. Ivanov, A. Borsukov, and A. Dunaev, “Fiber-optic system for intraoperative study of abdominal organs during minimally invasive surgical interventions,” Applied Sciences 9(2), 217 (2019).

6. H. Liu, M. Kohl-Bareis, and X. Huang, “Design of a tissue oxygenation monitor and verification on human skin,” Proceedings of SPIE-OSA Biomedical Optics 8087, 80871Y (2011).

7. C. Casavola, L. A. Paunescu, S. Fantini, M. A. Franceschini, P. M. Lugara, and E. Gratton, “Application of near-infrared tissue oxymetry to the diagnosis of peripheral vascular disease,” Clinical Hemorheology and Microcirculation 21(3–4), 389–393 (1999).

8. M. Wallace, A. Wax, D. N. Roberts, and R. N. Graf, “Reflectance spectroscopy,” Gastrointestinal endoscopy clinics of North America 19(2), 233–242 (2009).

9. E. Potapova, V. V. Dremin, E. A. Zherebtsov, I. N. Makovik, A. I. Zherebtsova, A. V. Dunaev, K. V. Podmasteryev, V. V. Sidorov, A. I. Krupatkin, L. S. Khakhicheva, and V. F. Muradyan, “Evaluation of microcirculatory disturbances in patients with rheumatic diseases by the method of diffuse reflectance spectroscopy,” Human Physiology 43(2), 222–228 (2017).

10. A. V. Dunaev, V. V. Sidorov, A. I. Krupatkin, I. E. Rafailov, S. G. Palmer, N. A. Stewart, S. G. Sokolovski, and E. U. Rafailov, “Investigating tissue respiration and skin microhaemocirculation under adaptive changes and the synchronization of blood flow and oxygen saturation rhythms,” Physiological Measurement 35(4), 607–621 (2014).

11. O. Khalil, “Metabolites, noninvasive optical measurements,” in Wiley Encyclopedia of Biomedical Engineering, Wiley, New York (2006).

12. H. Heusmann, J. Koelzer, and G. Mitic, “Characterization of female breasts in vivo by time-resolved and spectroscopic measurements in the near infrared spectroscopy,” Journal of Biomedical Optics 1(4), 425–434 (1996).

13. S. Jacques, “Optical properties of biological tissues: A review,” Physics in Medicine & Biology 58(11), 37–61 (2013).

14. Y. Abdulhameed, P. McClintock, and A. Stefanovska, “Race-specific differences in the phase coherence between blood flow and oxygenation: A simultaneous NIRS, white light spectroscopy and LDF study,” Journal of Biophotonics 13(4), e201960131 (2020).

15. K. Litvinova, I. E.Rafailov, A. V. Dunaev, S. G. Sokolovski, and E. U. Rafailov, “Non-invasive biomedical research and diagnostics enabled by innovative compact lasers,” Progress in Quantum Electronics 56, 1–14 (2017).

16. D. Rogatkin, L. G. Lapaeva, E. N. Petritskaya, V. V. Sidorov, and V. I. Shumskiy, “Multifunctional laser noninvasive spectroscopic system for medical diagnostics and some metrological provisions for that,” Proceedings of SPIE-OSA Biomedical Optics 7368, 73681Y (2009).

17. D. Rogatkin, S. G. Sokolovski, K. A. Fedorova, N. A. Stewart, V. V. Sidorov, and E. U. Rafailov, “Basic principles of design and functioning of multifunctional laser diagnostic system for non-invasive medical spectrophotometry,” Proceedings of SPIE 7890, 78901H (2011).

18. S. Jacques, D. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochemistry and Photobiology 53(6), 769–775 (1991).

19. T. Fitzpatrick, “The validity and practicality of sun-reactive skin types I through VI,” Archives of Dermatology 124(6), 869–871 (1988).

20. K. Akons, E. Dann, and D. Yelin, “Measuring blood oxygen saturation along a capillary vessel in human,” Biomedical Optics Express 8(11), 5342–5348 (2017).

21. A. Doronin, I. Meglinski, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomedical Optics Express 2(9), 2461–2469 (2011).

22. G. Petrov, A. Doronin, H. T. Whelan, I. Meglinski, and V. V. Yakovlev, “Human tissue color as viewed in high dynamic range optical spectral transmission measurements,” Biomedical Optics Express 3(9), 2154–2161 (2012).

23. I. Meglinski, A. Doronin, A. N. Bashkatov, E. Genina, and V. V. Tuchin, “Dermal component-based optical modeling ofskin translucency: Impact on skin color,” in Computational Biophysics of the Skin, B. Querleux (Ed.), Pan Stanford Publishing Ltd., 25–62 (2014).

24. E. Zherebtsov, V. Dremin, A. Popov, A. Doronin, D. Kurakina, M. Kirillin, I. Meglinski, and A. Bykov, “Hyperspectral imaging of human skin aided by artificial neural networks,” Biomedical Optics Express 10(7), 3545–3559 (2019).

25. V. Dremin, E. Zherebtsov, A. Bykov, A. Popov, A. Doronin, and I. Meglinski, “Influence of blood pulsation on diagnostic volume in pulse oximetry and photoplethysmography measurements,” Applied Optics 58(34), 9398–9405 (2019).

26. A. Ries, L. Prewitt, and J. Johnson, “Skin color and ear oximetry,” Chest 96(2), 287–290 (1989).

27. P. Bickler, J. Feiner, and J. Severinghaus, “Effects of skin pigmentation on pulse oximeter accuracy at low saturation,” Anesthesiology 102(4), 715–719 (2005).

28. B. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light wave reflectance,” Journal of Clinical Monitoring and Computing 27(3), 313–317 (2013).

29. L. Yan, S. Hu, A. Alzahrani, S. Alharbi, and P. Blanos, “A multi-wavelength opto-electronic patch sensor to effectively detect physiological changes against human skin types,” Biosensors 7(2), 22 (2017).

30. A. Dunaev, V. V. Dremin, E. A. Zherebtsov, I. E. Rafailov, K. S. Litvinova, S. G. Palmer, N. A. Stewart, S. G. Sokolovski, and E. U. Rafailov, “Individual variability analysis of fluorescence parameters measured in skin with different levels of nutritive blood flow,” Medical Engineering & Physics 37(6), 574–583 (2015).

31. V. Dremin, A. Dunaev, “How the melanin concentration in the skin affects the fluorescence-spectroscopy signal formation,” Journal of Optical Technology 83(1), 43–48 (2016).

32. M. Saha, V. Dremin, I. Rafailov, A. Dunaev, S. Sokolovski, and E. Rafailov, “Wearable laser Doppler flowmetry sensor: a feasibility study with smoker and non-smoker volunteers,” Biosensors 10(12), 201 (2020).

33. A. Fedorovich, Y. L. Loktionova, E. V. Zharkikh, M. A. Mikhailova, J. A. Popova, A. V. Suvorov, and E. A. Zherebtsov, “Body position affects capillary blood flow regulation measured with wearable blood flow sensors,” Diagnostics 11(3), 436 (2021).

34. V. Dremin, Z. Marcinkevics, E. Zherebtsov, A. Popov, A. Grabovskis, H. Kronberga, K. Geldnere, A. Doronin, I. Meglinski, and A. Bykov, “Skin complications of diabetes mellitus revealed by polarized hyperspectral imaging and machine learning,” IEEE Transactions on Medical Imaging 40(4), 1207–1216 (2021).

© 2014-2023 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+