Optical Properties of Glycated and Non-Glycated Hemoglobin – Raman/Fluorescence Spectroscopy and Refractometry

Ekaterina N. Lazareva (Login required)
Science Medical Center, Saratov State University, Russia
Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Russia

Andrey Y. Zyubin
REC “Fundamental and Applied Photonics. Nanophotonics”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia

Natalya I. Dikht
Saratov State Medical University named after V. I. Razumovsky, Russia

Alla B. Bucharskaya
Science Medical Center, Saratov State University, Russia
Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Russia
Saratov State Medical University named after V. I. Razumovsky, Russia

Ilya G. Samusev
REC “Fundamental and Applied Photonics. Nanophotonics”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia

Vasily A. Slezhkin
REC “Fundamental and Applied Photonics. Nanophotonics”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
Department of Chemistry, Kaliningrad State Technical University, Russia

Vyacheslav I. Kochubey
Science Medical Center, Saratov State University, Russia
Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Russia

Valery V. Tuchin
Science Medical Center, Saratov State University, Russia
Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Russia
Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, FRC "Saratov Research Centre of the Russian Academy of Sciences", Saratov, Russia


Paper #3479 received 28 Feb 2022; revised manuscript received 25 Apr 2022; accepted for publication 25 Apr 2022; published online 14 May 2022.

DOI: 10.18287/JBPE22.08.020303

Abstract

In this study, the optical properties of glycated (HbA1c) and non-glycated (Hb) hemoglobin are compared using Surface-enhanced Raman spectroscopy (SERS), spectrofluorimetry, and refractometry. Analysis of the spectral shift of SERS spectra showed good discrimination between two hemoglobins indicating differences in their molecular structure. The fluorescence spectra measured at excitation wavelengths of 260, 270, and 280 nm also indicate differences in the molecular structure of these hemoglobins. For the first time refractive index temperature increments were measured for HbA1c in a wide wavelength range in the visible and NIR as –(1.35 ± 0.11) x 10–4 °C–1 and compared with normal hemoglobin (dn/dT = –(1.02 ± 0.12) x 10–4 °C–1). The comparison of temperature RI increments for hemoglobin obtained from the whole blood of healthy volunteers and diabetic patients is also done. The data obtained can serve as a basis for further study of the optical properties of glycated hemoglobin and other glycated proteins.

Keywords

refraction; refractive index; temperature increment; fluorescence; Raman spectroscopy; SERS; hemoglobin; glycated hemoglobin HbA1c

Full Text:

PDF

References


1. M. Smiga, J. W. Smalley, P. Ślęzak, J. L. Brown, K. Siemińska, R. E. Jenkins, E. A. Yates, and T. Olczak, “Glycation of Host Proteins Increases Pathogenic Potential of Porphyromonas gingivalis,” International Journal of Molecular Sciences 22(12), 12084 (2021).

2. S. Yazdanpanah, M. Rabiee, M. Tahriri, M. Abdolrahim, A. Rajab, H. E. Jazayeri, and L. Tayebi, “Evaluation of glycated albumin (GA) and GA/HbA1c ratio for diagnosis of diabetes and glycemic control: A comprehensive review,” Journal Critical Reviews in Clinical Laboratory Sciences 54(4), 3 (2017).

3. E. Selvin, M. W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, and F. L. Brancati, “Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults,” New England Journal of Medicine 362(9), 800–811 (2010).

4. T. Pan, M. Li, J. Chen, and H. Xue, “Quantification of glycated hemoglobin indicator HbA1c through near-infrared spectroscopy,” Journal of Innovative Optical Health Sciences 7(4), 1350060 (2014).

5. P. Dong, H. Lin, K. Huang, and J. Cheng, “Label-free quantitation of glycated hemoglobin in single red blood cells by transient absorption microscopy and phasor analysis,” Science Advances 5(5), eaav0561 (2019).

6. Executive Summary: Standards of Medical Care in Diabetes, Diabetes Care 33 (Supplement 1), S4-S10 (2010).

7. V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: A horizon of opportunities,” Cytometry Part A 79(10), 737–745 (2011).

8. D. A. Nedosekin, M. A. Juratli, M. Sarimollaoglu, C. L. Moore, N. J. Rusch, M. S. Smeltzer, V. P. Zharov, and E. I. Galanzha, “Photoacoustic and photothermal detection of circulating tumor cells, bacteria and nanoparticles in cerebrospinal fluid in vivo and ex vivo,” Journal of Biophotonics 6(6–7), 523–533 (2013).

9. D. A. Nedosekin, M. Sarimollaoglu, J.-H. Ye, E. I. Galanzha, and V. P. Zharov, “In vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers,” Cytometry Part A 79(10), 825–833 (2011).

10. J. Q. Lin, R. Chen, S. Feng, J. Pan, Y. Li, G. Chen, M. Cheng, Z. Huang, Y. Yu, and H. Zeng, “A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle based SERS spectroscopy for potential applications in non-invasive cancer detection,” Nanomedicine: Nanotechnology, Biology and Medicine 7(5), 655–663 (2011).

11. J. Lin, J. Lin, Z. Huang, P. Lu, J. Wang, X. Wang, and R. Chen, “Raman spectroscopy of human hemoglobin for diabetes detection,” Journal of Innovative Optical Health Sciences 7(1),1350051 (2014).

12. I. Barman, N. C. Dingari, J. W. Kang, G. L. Horowitz, R. R. Dasari, and M. S. Feld, “Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin,” Analytical Chemistry 84(5), 2474−2482 (2012).

13. O. S. Zhernovaya, V. V. Tuchin, and I. V. Meglinski, “Monitoring of blood proteins glycation by refractive index and spectral measurements,” Laser Physics Letters 5(6), 460–464 (2008).

14. E. Shirshin, O. P. Cherkasova, T. Tikhonova, E. Berlovskaya, A. V. Priezzhev, and V. Fadeev, “Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways,” Journal of Biomedical Optics 20(5), 051033 (2015)

15. S. Y. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosensors and Bioelectronics 25(11), 2414–2419 (2010).

16. H. W. Han, X. L. Yan, R. X. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Applied Physics B 94(4), 667– 672 (2009).

17. I. Barman, N. C. Dingari, J. W. Kang, G. L. Horowitz, R. R. Dasari, and M. S. Feld, “Raman spectroscopy based sensitive and specific detection of glycated hemoglobin,” Analytical Chemistry 84(5), 2474–2482 (2012).

18. M. S. Kiran, T. Itoh, K.-I. Yoshida, N. Kawashima, V. Biju, and M. Ishikawa, “Selective Detection of HbA1c Using Surface Enhanced Resonance Raman Spectroscopy,” Analytical Chemistry 82(2), 1342−1348 (2010).

19. M. Sackmann, S. Bom, T. Balster, and A. Materny, “Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy,” Journal of Raman Spectroscopy 38(3), 277−282 (2007).

20. J. T. Liu, L.-Y. Chen, M.-C. Shih, Y. Chang, and W.-Y. Chen, “The investigation of recognition interaction between phenyl boronate monolayer and glycated hemoglobin using surface plasmon resonance,” Analytical Biochemistry 375(1), 90–96 (2008).

21. J. Li, K.-W. Chang, C.-H. Wang, C.-H. Yang, S.-C. Shiesh, and G.-B. Lee, “On-chip, aptamer-based sandwich assay for detection of glycated hemoglobins via magnetic beads,” Biosensors and Bioelectronics 79, 887–893 (2016).

22. P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” Journal of Biophotonics 10(2), 303–310 (2017).

23. S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. V. Tuchin, “Wavelength dependence of the refractive index of human colorectal tissues: comparison between healthy mucosa and cancer,” Journal of Biomedical Photonics and Engineering 2(4), 040307 (2016).

24. K. Zirk, H. Poetzschke, “On the suitability of refractometry for the analysis of glucose in blood-derived fluids,” Medical Engineering & Physics 26(6), 473–481 (2004).

25. K. Zirk, H. Poetzschke, “A refractometry-based glucose analysis of body fluids,” Medical Engineering & Physics 29(4), 449–458 (2007).

26. S. I. Sherwani, H. A. Khan, A. Ekhzaimy, A. Masood, and M. K. Sakharkar,“Significance of HbA1c test in diagnosis and prognosis of diabetic patients,” Biomarker Insights 11, BMI-S38440 (2016).

27. B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton,“Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Analytical and Bioanalytical Chemistry 387(5), 1691–1703 (2007).

28. R. Ghosh Moulick, J. Bhattacharya, S. Roy, S. Basak, and A. K. Dasgupta, “Compensatory secondary structure alterations in protein glycation,” Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics 1774, 233−242 (2007).

29. D. P. Cowcher, T. Deckert-Gaudig, V. L. Brewster, L. Ashton, V. Deckert, and R. Goodacr, “Detection of protein glycosylation using tip-enhanced Raman scattering,” Analytical Chemistry 88(4), 2105–2112 (2016).

30. Q. Sun, “The Raman OH stretching bands of liquid water,” Vibrational Spectroscopy 51(2), 213–217 (2009).

31. G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman tweezers as a diagnostic tool of hemoglobin-related blood disorders,” Sensors 8(12), 7818–7832 (2008).

32. C. R. Yonzon, C. L. Haynes, X. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Analytical Chemistry 76(1), 78–85 (2004).

33. J. Lin, Y. Zeng, J. Lin, J. Wang, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region,” Applied Physics Letters 104(10), 104102 (2014).

34. A. I. Erokhin, N. V. Morachevskii, and F. S. Faizullov, “Temperature dependence of the refractive index in condensed media,” Journal of Experimental and Theoretical Physics 74, 1336–1341 (1978).

35. M. V. Volkenshtein, Molecular Optics, Gosteskhizdat, Moscow (1951) [in Russian].

36. G. Mazarevica, T. Freivalds, and A. Jurka, “Properties of erythrocyte light refraction in diabetic patients,” Journal of Biomedical Optics 7(2), 244–247 (2002).

37. T. K. Das, M. Couture, Y. Ouellet, M. Guertin, and D. L. Rousseau, “Simultaneous observation of the O-O and Fe-O2 stretching modes in oxyhemoglobins,” Proceedings of the National Academy of Sciences 98(2), 479–484 (2001).

38. C. G. Atkins, K. Buckley, M. W. Blades, and R. F. B. Turner, “Raman spectroscopy of blood and blood components,” Applied Spectroscopy 71(5), 767–793 (2017).

39. S. Ahlawat, A. Chowdhury, N. Kumar, A. Uppal, R. S. Verma, and P. K. Gupta, “Polarized Raman Spectroscopic Investigations on Hemoglobin Ordering in Red Blood Cells,” Journal of Biomedical Optics 19(8), 87002 (2014).

40. S. Abdalla, F. Farsaci, E. Tellone, W. Shirbeeny, A. M. Hassan, F. Bahabri, and S. Kandil, “Hemoglobin glycation increases the electric charges on red blood cells: Effects of dielectric polarization,” Materials Chemistry and Physics 276, 125348 (2022).






© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+