Laser Effect on a Pathologically Altered Capsule of the Lens of the Eye

Olga I. Baum
Institute of Photonic Technologies Federal State Institution “Research Center “Crystallography and Photonics” RAS, Troitsk, Moscow, Russian Federation

Ekaterina M. Kasianenko
Institute of Photonic Technologies Federal State Institution “Research Center “Crystallography and Photonics” RAS, Troitsk, Moscow, Russian Federation

Alexey V. Yuzhakov (Login required)
Institute of Photonic Technologies Federal State Institution “Research Center “Crystallography and Photonics” RAS, Troitsk, Moscow, Russian Federation

Alibek A. Gamidov
Federal State Budgetary Scientific Institution “Research Institute of Eye Diseases”, Moscow, Russian Federation

Elena P. Medvedeva
Federal State Budgetary Scientific Institution “Research Institute of Eye Diseases”, Moscow, Russian Federation

Yusef N. Yusef
Federal State Budgetary Scientific Institution “Research Institute of Eye Diseases”, Moscow, Russian Federation


Paper #3480 received 04 Mar 2022; revised manuscript received 05 Apr 2022; accepted for publication 11 Apr 2022; published online 28 Apr 2022.

DOI: 10.18287/JBPE22.08.020302

Abstract

One of the current areas of application of lasers in ophthalmology is cataract surgery and reducing the number of negative reactions to surgical intervention. In the postoperative period, clouding of the lens capsular bag and the risk of contraction capsular syndrome associated with changes in the biomechanical properties of the lens and capsular bag system are often observed. In the work, the biomechanics of such system were studied. Lenses that were placed in a 10% formalin solution to create cataract-simulating opacity for various amounts of time were studied by optical-coherent tomography, speckle-interferometry method and with fiber-optics setup for scattering dynamics registration. It was shown that speckle interferometry technique is sensitive to structural changes of lenses due to formalin exposure, which makes tissue more elastic and less transparent. OCT shows the same result and is more sensitive to the changes of laser wavelength. In addition, theoretical studies were carried out and have shown that changing laser wavelength can be dangerous for the integrity of the capsule film during medical intervention due to increase of maximum thermal stress.

Keywords

ophthalmology; cataract simulation; optical diagnostics

Full Text:

PDF

References


1. N. P. Pashtaev, I. V. Kulikov, “Femtosecond laser in cataract surgery,” The Fyodorov Journal of Ophthalmic Surgery 3, 74–79 (2016) [in Russian].

2. R. Autrata, J. Rehůrek, “Intraocular lens implantation in children,” Ceska a Slovenska Oftalmologie: Casopis Ceske Oftalmologicke Spolecnosti a Slovenske Oftalmologicke Spolecnosti 56(5), 303–310 (2000).

3. D. Baráková, P. Kuchynka, D. Klecka, J. Simůnková, and J. Borovanská, “Frequency of secondary cataracts in patients with AcrySof MA30BA and MA60BM lenses,” Ceska a Slovenska Oftalmologie: Casopis Ceske Oftalmologicke Spolecnosti a Slovenske Oftalmologicke Spolecnosti 56(1), 38–42 (2000).

4. J. R. Shepherd, Complications of foldable implants, ASCRS, Boston (STAAR Surg. Inc.) (1997).

5. A. Parajuli, P. Joshi, P. Subedi, and C. Pradhan, “Effect of Nd: YAG laser posterior capsulotomy on intraocular pressure, refraction, anterior chamber depth, and macular thickness,” Clinical Ophthalmology (Auckland, NZ) 13, 945 (2019).

6. A. A. Gamidov, A. V. Bol’shunov, A. V. Yuzhakov, E. M. Shcherbakov, O. I. Baum and E. N. Sobol, “Optical transmission and laser ablation of pathologically changed eye lens capsule,” Quantum Electronics 45(2), 180–184 (2015).

7. O. I. Baum, O. G. Romanov, A. A. Gamidov, A. A. Fedorov, G. S. Romanov, G. I. Zheltov, and E. N. Sobol, “Optimization of laser surgery of the secondary cataract,” Almanac of Clinical Medicine 44(2), 130–139 (2016) [in Russian].

8. G. I. Zheltov, “Problems of safety when working with lasers,” Ophthalmology in Belarus 4, 39–45 (2010) [in Russian].

9. F. Fankhauser, S. Kwasniewska (Eds.), Lasers in Ophthalmology: Basic, Diagnostic and Surgical Aspects: A Review, Kugler Publications, The Hague (2003).

10. L. E. Katz, J. A. Fleischman, and S. L. Trokel, “The YAG laser: an American experience,” American Intra-Ocular Implant Society Journal 9(2) 151–156 (1983).

11. A. A. Gamidov, V. V. Sosnovskiĭ, V. I. Boev, and M. A. Buzykanova, “Study of risk factors of laser irradiation-induced intraocular lens damage,” Vestnik Oftalmologii 122(5), 28–31 (2006).

12. D. Baráková, P. Kuchynka, D. Klecka, J. Simůnková, and J. Borovanská, “Frequency of secondary cataracts in patients with AcrySof MA30BA and MA60BM lenses,” Ceska a Slovenska Oftalmologie: Casopis Ceske Oftalmologicke Spolecnosti a Slovenske Oftalmologicke Spolecnosti 56(1), 38–42 (2000).

13. A. A. Gamidov, Laser reconstructive interventions in the area of the iridolenticular diaphragm in pseudophakia (clinical and experimental study), Doctor of sciences thesis, Moscow (2016) [in Russian].

14. R. F. Steinert, “Neodymium: Yttrium-Aluminum-Garnet Laser Posterior Capsulotomy,” Chapter 51 in Cataract Surgery, 3rd ed., Philadelphia, Elsevier, WB Saunders, 617–629 (2009).

15. E. V. Gubarkova, A. A. Sovetsky, V. Yu. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Yu. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomedical Optics Express 10(5), 2244–2263 (2019).

16. K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Physics in Medicine & Biology 56(1), R1–R29 (2011).

17. K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” Journal of Biomedical Optics 18(12), 121510 (2013).

18. S. Wang, K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” Journal of Biophotonics 8(4), 279–302 (2015).

19. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, M. S. Hepburn, A. Mowla, and B. F. Kennedy, Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances,” Journal of Biophotonics 14(2), e202000257 (2021).

20. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. I. Omelchenko, O. I. Baum, S. E. Avetisov, A. V. Bolshunov, V. I. Siplivy, D. V. Shabanov, A. Vitkin, and E. N. Sobol, “Optical coherence elastography for strain dynamics measurements in laser correction of cornea shape,” Journal of Biophotonics 10(11), 1450–1463 (2017).

21. O. I. Baum, G. I. Zheltov, A. I. Omelchenko, G. S. Romanov, O. G. Romanov, and E. N. Sobol, “Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues,” Laser Physics 23(8), 085602 (2013).

22. O. I. Baum, A. V. Yuzhakov, A. V. Bolshunov, V. I. Siplivyi, O. V. Khomchik, G. I. Zheltov, and E. N. Sobol, “New laser technologies in ophthalmology for normalisation of intraocular pressure and correction of refraction,” Quantum Electronics 47(9), 860 (2017).

23. O. I. Baum, V. Y. Zaitsev, A. V. Yuzhakov, A. P. Sviridov, M. L. Novikova, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, and E. N. Sobol, “Interplay of temperature, thermal-stresses and strains in laser-assisted modification of collagenous tissues: Speckle-contrast and OCT-based studies,” Journal of Biophotonics 13(1), e201900199 (2020).

24. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. I. Omelchenko, O. I. Baum, S. E. Avetisov, A. V. Bolshunov, V. I. Siplivy, D. V. Shabanov, A. Vitkin, and E. N. Sobol, “Optical coherence elastography for strain dynamics measurements in laser correction of cornea shape,” Journal of Biophotonics 10(11), 1450–1463 (2017).

25. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, O. I. Baum, A. V. Yuzhakov, A. I. Omelchenko, and E. N. Sobol, “OCT-based strain mapping and compression optical coherence elastography to study and control laserassisted modification of avascular collagenous tissues,” Proceedings of SPIE 11242, 1124202 (2020).






© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+