Study of Laser-Induced Microdeformations of the Cornea Using Phase-Sensitive Optical Coherent Elastography

Ekaterina M. Kasianenko (Login required)
Institute of Photon Technologies, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk, Moscow, Russia

Anastasia V. Golovchenko
Department of Ophthalmology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia

Vladimir I. Siplivyi
Department of Ophthalmology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia

Oleg G. Romanov
Belarusian State University, Minsk, Belarus
B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

Olga I. Baum
Institute of Photon Technologies, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk, Moscow, Russia

Paper #3488 received 16 Mar 2022; revised manuscript received 27 Apr 2022; accepted for publication 02 May 2022; published online 20 May 2022.

DOI: 10.18287/JBPE22.08.020305


In many clinical cases, knowledge of the biomechanical properties of the cornea will allow for early diagnosis and also contribute to the success of treatment. The methods existing in the clinic characterize the biomechanical properties of the cornea as a whole, but do not give an idea of its local properties. One of the promising approaches to measure local changes in biomechanics is optical coherence elastography (OCE) based on 
phase-sensitive optical coherence tomography (OCT). In this work, the OCE method, based on the registration of small tissue deformations under an applied load, showed that the appearance and propagation of mechanical waves due to laser exposure depend on the loading of the studied biological tissue due to its tension with the application of various intraocular pressures (IOP). An analysis of inter-frame differential OCT images showed that the width of the laser impact zone on the tissue increases with increasing of IOP. An analysis of the strain amplitudes depending on the IOP at a given point revealed a correlation with the IOP value and made it possible to fix the fluidity threshold for the sample under consideration in the given experimental geometry.


intraocular pressure; phase-sensitive optical coherent elastography; cornea; keratoconus; biomechanics

Full Text:



1. G. V. Voronin, I. A. Bubnova, “Changes in biomechanical properties of the cornea after keratorefractive surgery,” Vestnik Oftalmologii 135(4), 108–112 (2019) [in Russian].

2. X. Qin, M. Yu, H. Zhang, X. Chen, and L. Li, “The mechanical interpretation of ocular response analyzer parameters,” BioMed Research International 2019, 5701236 (2019).

3. S. Koh, R. Inoue, R. Ambrósio Jr., N. Maeda, A. Miki, and K. Nishida, “Correlation between corneal biomechanical indices and the severity of keratoconus,” Cornea 39(2), 215–221 (2020).

4. M. E. Can, H. Kızıltoprak, A. D. Buluş, D. Özkoyuncu, M. Koç, and Z. Ö. Yıldız, “Corneal Biomechanical Properties in Childhood Obesity,” Journal of Pediatric Ophthalmology & Strabismus 57(2), 103–107 (2020).

5. I. A. Bubnova, S. V. Asatryan, “Biomechanical properties of the cornea and tonometry measurements,” Vestnik Oftalmologii 135(4), 27–32 (2019) [in Russian].

6. S. E. Avetisov, I. A. Novikov, I. A. Bubnova, A. A. Antonov, and V. I. Siplivyi, “Determination of corneal elasticity coefficient using the ORA database,” Journal of Refractive Surgery 26(7), 520–524 (2010).

7. M. O. Akdemir, B. T. Acar, and S. Acar, “Biomechanics in DALK: Big bubble vs manual lamellar dissection,” Arquivos Brasileiros de Oftalmologia 83(2), 87–91(2020).

8. M. Zhang, F. Zhang, Y. Li, Y. Song, and Z. Wang, “Early diagnosis of keratoconus in chinese myopic eyes by combining Corvis ST with Pentacam,” Current Eye Research 45(2), 118–123 (2020).

9. S. Shiga, T. Kojima,T. Nishida, T. Nakamura, and K. Ichikawa, “Evaluation of CorvisST biomechanical parameters and anterior segment optical coherence tomography for diagnosing forme fruste keratoconus,” Acta Ophthalmologica 99(6), 644–651 (2021).

10. S. Ren, L. Xu, Q. Fan, Y. Gu, and K. Yang, “Accuracy of new Corvis ST parameters for detecting subclinical and clinical keratoconus eyes in a Chinese population,” Scientific Reports 11(1), 4962 (2021).

11. Y. Li, Z. Xu, Q. Liu, Y. Wang, K. Lin, J. Xia, S. Chen, and L. Hu, “Relationship between corneal biomechanical parameters and corneal sublayer thickness measured by Corvis ST and UHR-OCT in keratoconus and normal eyes,” Eye and Vision 8(1), 2 (2021).

12. P. Shao, A. M. Eltony, T. G. Seiler, B. Tavakol, R. Pineda, T. Koller, T. Seiler, and S.-H. Yun, “Spatially-resolved Brillouin spectroscopy reveals biomechanical abnormalities in mild to advanced keratoconus in vivo,” Scientific Reports 9(1), 7467 (2019).

13. T. G. Seiler, P. Shao, A. Eltony, T. Seiler, and S.-H. Yun, “Brillouin spectroscopy of normal and keratoconus corneas,” American Journal of Ophthalmology 202, 118–125 (2019).

14. X. Qian, T. Ma, C.-C. Shih, M. Heur, J. Zhang, K. K. Shung, R. Varma, and M. S. Humayun, “Ultrasonic microelastography to assess biomechanical properties of the cornea,” IEEE Transactions on Biomedical Engineering 66(3), 647–655 (2018).

15. E. Pavlatos, H. Chen, K. Clayson, X. Pan, and J. Liu, “Imaging corneal biomechanical responses to ocular pulse using high-frequency ultrasound,” IEEE Transactions on Medical Imaging 37(2), 663–670 (2017).

16. K. S. Avetisov, N. A. Bakhchieva, S. E.Avetisov, I. A. Novikov, N. V. Belikov, and I. V. Khaydukova, “Biomechanical aspects of anterior capsulotomy in cataract surgery,” Vestnik Oftalmologii 133(3), 82–88 (2017) [in Russian].

17. M. R. Ford, V. S. DeStefano, I. Seven, and W. J. Dupps Jr., “In vivo measurements of normal, keratoconic, and post crosslinked keratoconic human cornea with optical coherence elastography (Conference Presentation),” SPIE Proceedings 10880, 108800X (2019).

18. M. S. Hepburn, K. Y. Foo, P. Wijesinghe, P. R. T. Munro, L. Chin, and B. F. Kennedy, “Speckle-dependent accuracy in phase-sensitive optical coherence tomography,” Optics Express 29(11), 16950–16968 (2021).

19. X. Qian, R. Li, Y. Li, G. Lu, Y. He, M. S. Humayun, Z. Chen, and Q. Zhou, “In vivo evaluation of posterior eye elasticity using shaker-based optical coherence elastography,” Experimental Biology and Medicine 245(4), 282–288 (2020).

20. O. I. Baum, V. Y. Zaitsev, A. V. Yuzhakov, A. P. Sviridov, M. L. Novikova, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, and E. N. Sobol, “Interplay of temperature, thermal-stresses and strains in laser-assisted modification of collagenous tissues: Speckle-contrast and OCT-based studies,” Journal of Biophotonics 13(1), e201900199 (2020).

21. V. Y. Zaitsev, L. A. Matveev, A. A. Sovetsky, and A. L. Matveyev, “Quantitative Mapping of Strains and Young Modulus Based on Phase-Sensitive OCT,” Optical Coherence Tomography and Its Non-Medical Applications 3, 165 (2020).

22. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. I. Omelchenko, O. I. Baum, S. E. Avetisov, A. V. Bolshunov, V. I. Siplivy, D. V. Shabanov, A. Vitkin, and E. N. Sobol, “Optical coherence elastography for strain dynamics measurements in laser correction of cornea shape,” Journal of Biophotonics 10(11), 1450–1463 (2017).

23. F. Zvietcovich, A. Nair, M. Singh, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence elastography of the anterior eye: Understanding the biomechanics of the limbus,” Investigative Ophthalmology & Visual Science 61(13), 7 (2020).

24. A. Gokul, H. R. Vellara, and D. V. Patel, “Advanced anterior segment imaging in keratoconus: a review,” Clinical & Experimental Ophthalmology 46(2), 122–132 (2018).

25. B. J. Thomas, A. Galor, A. A. Nanji, F. E. Sayyad, J. Wang, S. R. Dubovy, M. G. Joag, and C. L. Karp, “Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia,” The Ocular Surface 12(1), 46–58 (2014).

26. O. I. Baum, G. I. Zheltov, A. I. Omelchenko, G. S. Romanov, O. G. Romanov, and E. N. Sobol, “Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues,” Laser Physics 23(8), 085602 (2013).

27. O. I. Baum, A. V. Yuzhakov, A. V. Bolshunov, V. I. Siplivyi, O. V. Khomchik, G. I. Zheltov, and E. N. Sobol, “New laser technologies in ophthalmology for normalisation of intraocular pressure and correction of refraction,” Quantum Electronics 47(9), 860 (2017).

© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+