Investigation of Porous Silicon Nanocomposites with Hydroxyapatite Powder Solubility

Аndrey N. Agafonov
Samara National Research University, Russian Federation

Diana Suyundukovа (Login required)
Samara National Research University, Russian Federation

Natalya V. Latukhina
Samara National Research University, Russian Federation

Alexander V. Pavlikov
Moscow State University, Russian Federation


Paper #3492 received 2 May 2022; revised manuscript received 23 Jun 2022; accepted for publication 23 Jun 2022; published online 30 Jun 2022.

DOI: 10.18287/JBPE22.08.020306

Abstract

In this work, precipitation of suspensions and colloidal solutions of hydroxyapatite (HAP), porous silicon (por-Si) and por-Si+HAP nanocomposites were studied by scanning electron microscopy and Raman spectroscopy. The precipitation was carried out from suspensions with different time exposure. The noticeable solubility of the nanocomposite powder in water is shown.

Keywords

nanocomposite; hydroxyapatite; porous silicon; colloidal solution scanning electron microscope; Raman spectroscopy

Full Text:

PDF

References


1. S. M. Barinov, V. S. Komlev, Biokeramika na osnove fosfatov kal’ciya, Nauka, Moscow (2005). ISBN 5-02-033724-2 [in Russian].

2. J. Salonen, A. M. Kaukonen, J. Hirvonen, and V. P. Lehto, “Mesoporous silicon in drug delivery applications,” Journal of Pharmaceutical Sciences 97(2), 632–653 (2008).

3. С. Rey, C. Combes, C. Drouet, H. Sfihi, and A. Barroug, “Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials,” Material Science and Engineering 27(2), 198–205 (2007).

4. O. I. Ksenofontova, A. V. Vasin, V. V. Egorov, A. V. Bobyl’, F. Y. Soldatenkov, E. I. Terukov, V. P. Ulin, N. V. Ulin, and O. I. Kiselev, “Porous silicon and its application in biology and medicine,” Zhurnal Tekhnicheskoj Fiziki 84(1) 67–78 (2014) [in Russian].

5. D. Fan, G. R. Akkaraju, E. F. Couch, L. T. Canham, and J. L. Coffer, “The role of nanostructured mesoporous silicon in discriminating in vitro calcification for electrospun composite tissue engineering scaffolds,” Nanoscale 3, 354–361 (2011).

6. L. Pramatarova, E. Pecheva, D. Dimova-Malinovska, R. Pramatarova, U. Bismayer, T. Petrov, and N. Minkovski, “Porous silicon as a substrate for hydroxyapatite growth,” Vacuum 76, 135–138 (2004).

7. E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A. D. Leonard, B. K. Price, M. M.-C. Cheng, P. Decuzzi, J. M. Tour, F. Robertson, and M. Ferrari, “Mesoporous Silicon Particles as a Multistage Delivery System for Imaging and Therapeutic Applications,” Nature Nanotechnology 3(3), 151–157 (2008).

8. V. V. Tregulov, Poristyj kremnij: tekhnologiya, svojstva, primenenie, Ryazanskiy Gosudarstvennyj Universitet named after S. A. Esenina, Ryazan’ (2011). ISBN 978-5-88006-677-3 [in Russian].

9. P. G. Travkin, N. V. Voroncova, S. A. Vysockij, A. S. Len’shin, Y. M. Spivak, and V. A. Moshnikov, “Issledovanie zakonomernostej formirovaniya struktury poristogo kremniya pri mnogostadijnyh rezhimah elektrohimicheskogo travleniya,” Proceedings of Saint Petersburg Electrotechnical University 4, 3–9 (2011) [in Russian].

10. V. Ya. Shevchenko, O. I. Kiselev, V. N. Sokolov et al., Issledovanie, tekhnologiya i ispol’zovanie nanoporistyh nositelej lekarstv v medicine, Himizdat, Saint-Peterburg (2015). ISBN 978-5-93808-255-7 [in Russian].

11. Yu. A. Polkovnikova, A. S. Len’shin, P. V. Seredin, and D. A. Minakov, “Porous silicon nanoparticles containing neurotropic drugs,” Inorganic Materials 53, 477–483 (2017).

12. D. R. Suyundukova, N. V. Latuhina, K. A. Ganichkina, and P. V. Kazakevich, “Porous silicon and nanocomposites based on it as biomaterials,” Proceedings of IV Interdisciplinary Scientific Forum with International Participation “New materials and advanced technologies” 2, 186–187 (2018) [in Russian].

13. V. Pukhova, V. Kolesnikovich, Y. Spivak, N. Latukhina, and D. Suyundukova, “Features of the Localization of HAP in Porous Silicon with Various Surface Treatments,” Proceedings of the 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 1000–1003 (2020).

14. E. V. Pisareva, V. G. Podkovkin, E. A. Yulaev, and E. N. Arkhipova, “Features of the dynamics of demineralization of human and rat bone tissue in morphological studies,” Vestnik Samarskogo Gosudarstvennogo Universiteta 7(47), 167–171 (2006) [in Russian].

15. E. Timchenko, E. V. Timchenko, E. V. Pisareva, M. Yu. Vlasov, L. T. Volova, O. O. Frolov, and A. R. Kalimullina, “Experimental studies of hydroxyapatite by Raman spectroscopy,” Journal of Optical Technology 85(3), 130–135 (2018).

16. A. F. Alykova, I. N. Zavestovskaya, V. G. Yakunin, and V. Y. Timoshenko, “Raman diagnostics of silicon nanocrystals dissolution in aqueous medium,” Journal of Physics: Conference Series 945, 012002 (2018).

17. A. F. Alykova, “Optical Methods for Diagnostics of Silicon Nanoparticles for Application in Biomedicine,” Sbornik trudov XVI Vserossijskogo Molodezhnogo Samarskogo Konkursa – Konferencii Nauchnyh Rabot po Optike i Lazernoj Fizike, Moskva, 41–49 (2018). ISBN 978-5-902622-39-0 [in Russian].

18. Bioactive glass, Mo-Sci Corporation (accessed 1 May 2022) [https://mo-sci.com/products/bioactive-glass/].






© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+