Physical and Biological Properties of Layers with Nanoparticles Based on Metal Chalcogenides and Titanium Synthesized by Femtosecond Laser Ablation and Fragmentation in Liquid

Ulyana E. Kurilova
Vladimir State University, Russia
I. M. Sechenov First Moscow State Medical University, Russia
National Research University of Electronic Technology, Zelenograd, Moscow, Russia

Anton S. Chernikov
Vladimir State University, Russia

Dmitry A. Kochuev
Vladimir State University, Russia

Lidiya S. Volkova
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Moscow, Russia

Anna A. Voznesenskaya
Vladimir State University, Russia

Ruslan V. Chkalov
Vladimir State University, Russia

Dmitriy V. Abramov
Vladimir State University, Russia

Alexander V. Kazak
Vladimir State University, Russia
Moscow Polytechnic University, Russia

Irina A. Suetina
National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N.F. Gamaleya, Moscow, Russia

Marina V. Mezentseva
National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N.F. Gamaleya, Moscow, Russia

Leonid I. Russu
National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N.F. Gamaleya, Moscow, Russia

Alexander Yu. Gerasimenko
National Research University of Electronic Technology, Zelenograd, Moscow, Russia
I.M. Sechenov First Moscow State Medical University, Russia

Kirill S. Khorkov orcid (Login required)
Vladimir State University, Russia

Paper #3587 received 21 Jan 2023; revised manuscript received 24 Mar 2023; accepted for publication 10 Apr 2023; published online 3 May 2023.

DOI: 10.18287/JBPE23.09.020301


In this paper, we present the physical properties and toxicological assessment of layers with nanoparticles based on metal chalcogenides and titanium on human fibroblast cells. Nanoparticles layers based on metal chalcogenides (MoS2, WS2, ZnS) and titanium were applied onto substrate by spray deposition method. Nanoparticles and flakes were synthesized by laser ablation and fragmentation in liquid by femtosecond pulses. We investigated the size and morphology of the synthesized nanoparticles: WS2-based flakes have a polygonal shape with dimensions up to 600 nm, other types of nanoparticles have a shape closer to spherical with sizes from 50 to 150 nm. Interaction of ultrafast laser radiation with materials in liquid is accompanied by the dissociation of water molecules leads to formation of hydrogen sulfide and oxides. To assess the biocompatibility of layers with synthesized nanoparticles, the MTT assay was performed with fibroblast cells. According to in vitro studies, Ti-based nanoparticles have the largest biocompatibility, and WS2-based flakes have the smallest ones. Thus, synthesized Ti-based nanoparticles can be used in biomedical applications to support tissue regeneration without additional modification. Due to their properties, metal sulfides-based nanoparticles can be used in the photodynamic therapy of oncological diseases to destroy cancer cells.


metal chalcogenides; pulsed laser ablation in liquid; pulsed laser fragmentation; nanoparticles; toxicity; theranostics; targeted drug delivery; biological markers

Full Text:



1. R. Canaparo, F. Foglietta, T. Limongi, and L. Serpe, “Biomedical Applications of Reactive Oxygen Species Generation by Metal Nanoparticles,” Materials (Basel) 14(1), 53 (2020).

2. K. T. Nguyen, Y. Zhao, “Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics. Accounts of chemical research,” Accounts of Chemical Research 48(12), 3016–3025 (2015).

3. G. Modugno, C. Ménard-Moyon, M. Prato, and A. Bianco, “Carbon nanomaterials combined with metal nanoparticles for theranostic applications,” British Journal of Pharmacology 172(4), 975–991 (2015).

4. O. A. Kuchur, S. A. Tsymbal, M. V. Shestovskaya, N. S. Serov, M. S. Dukhinova, and A. A. Shtil, “Metal-derived nanoparticles in tumor theranostics: Potential and limitations,” Journal of Inorganic Biochemistry 209, 111117 (2020).

5. K. Chatterjee, S. Sarkar, K. J. Rao, and S. Paria, “Core/shell nanoparticles in biomedical applications,” Advances in Colloid and Interface Science 209, 8–39 (2014).

6. L. A. Dykman, N. G. Khlebtsov, “Multifunctional gold-based nanocomposites for theranostics,” Biomaterials 108, 13–34 (2016).

7. X. Li, J. Wei, K. E. Aifantis, Y. Fan, Q. Feng, F. Z. Cui, and F. Watari, “Current investigations into magnetic nanoparticles for biomedical applications,” Journal of Biomedical Materials Research Part A 104(5), 1285–1296 (2016).

8. C. Egbuna, V. K. Parmar, J. Jeevanandam, S. M. Ezzat, K. C. Patrick-Iwuanyanwu, C. O. Adetunji, J. Khan, E. N. Onyeike, C. Z. Uche, M. Akram, M. S. Ibrahim, M. M. El Mahdy, C. G. Awuchi, K. Saravanan, H. Tijjani, U. E. Odoh, M. Messaoudi, J. C. Ifemeje, M. C. Olisah, N. J. Ezeofor, C. J. Chikwendu, and C. G. Ibeabuchi, “Toxicity of nanoparticles in biomedical application: Nanotoxicology,” Journal of Toxicology 2021, 9954443 (2021).

9. C. G. Moura, R. S. F. Pereira, M. Andritschky, A. L. B. Lopes, J. P. de Freitas Grilo, R. M. do Nascimento, and F. S. Silva, “Effects of laser fluence and liquid media on preparation of small Ag nanoparticles by laser ablation in liquid,” Optics & Laser Technology 97, 20–28 (2017).

10. J. Perrière, E. Millon, and E. Fogarassy (Eds.), Recent advances in laser processing of materials, 1st ed., Elsevier, Amsterdam (2006). ISBN: 978-0-08044-727-8.

11. A. Kanitz, M. R. Kalus, E. L. Gurevich, A. Ostendorf, S. Barcikowski, and D. Amans, “Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles,” Plasma Sources Science and Technology 28(10), 103001 (2019).

12. R. Viskup (Ed.), High energy and short pulse lasers, IntechOpen, London, UK (2016). ISBN: 978-953-51-2606-5.

13. A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in materials tailored with photosensitive agents,” Optical Materials Express 1(5), 866–882 (2011).

14. S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, and G. Račiukaitis, “Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow,” Applied Physics Letters 91(8), 083113, (2007)

15. A. V. Kabashin, M. Meunier, “Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water,” Journal of Applied Physics 94(12), 7941–7943 (2003).

16. S. Barcikowski, A. Hahn, A. V. Kabashin, and B. N. Chichkov, “Properties of nanoparticles generated during femtosecond laser machining in air and water,” Applied Physics A 87, 47–55 (2007).

17. M. Kawasaki, N. Nishimura, “1064-nm laser fragmentation of thin Au and Ag flakes in acetone for highly productive pathway to stable metal nanoparticles,” Applied Surface Science 253, 2208–2216 (2006).

18. G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Progress in Materials Science 52(4), 648–698 (2007).

19. V. Amendola, M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Physical Chemistry Chemical Physics 11(20), 3805–3821, (2009)

20. P. C. Vella, S. S. Dimov, E. Brousseau, and B. R. Whiteside, “A new process chain for producing bulk metallic glass replication masters with micro-and nano-scale features,” The International Journal of Advanced Manufacturing Technology 76, 523–543 (2015).

21. C. G. Kuo, C. G. Chao, “A novel method of centrifugal processing for the synthesis of lead–bismuth eutectic alloy nanospheres and nanowires,” The International Journal of Advanced Manufacturing Technology 32, 468–472 (2007).

22. H. Chang, C. S. Jwo, P. S. Fan, and S. H. Pai, “Process optimization and material properties for nanofluid manufacturing,” The International Journal of Advanced Manufacturing Technology 34, 300–306 (2007).

23. H. Oh, M. Lee, “Laser-direct fabrication of invisible Ag nanowire electrode pattern on flexible plastic substrate,” Thin Solid Films 636, 375–383 (2017).

24. M. E. Koleva, N. N. Nedyalkov, N. Fukata, W. Jevasuwan, and D. Karashanova, “Laser-assisted approach for synthesis of plasmonic Ag/ZnO nanostructures,” Superlattices and Microstructures 109, 886–896 (2017).

25. R. Intartaglia, K. Bagga, and F. Brandi, “Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield,” Optics Express 22(3), 3117–3127 (2014).

26. M. S. Brown, C. B. Arnold, Fundamentals of laser–material interaction and application to multiscale surface modification, in Laser Precision Microfabrication, K. Sugioka, M. Meunier, and A. Piqué (Eds.), Springer, Berlin, Heidelberg (2010). ISBN: 978-3-642-10522-7.

27. G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, J. Qiu, and Z. Xu, “Fabrication and photocatalytic property of α-Bi2O3 nanoparticles by femtosecond laser ablation in liquid,” Journal of Alloys and Compounds 507(2), L43–L46 (2010).

28. H. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Advanced Functional Materials 22(7), 1333–1353 (2012).

29. J. Xiao, P. Liu, C. X. Wang, and G. W. Yang, “External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly,” Progress in Materials Science 87, 140–220 (2017).

30. A. Subhan, A.-H. I. Mourad, and Y. Al-Douri, “Influence of Laser Process Parameters, Liquid Medium, and External Field on the Synthesis of Colloidal Metal Nanoparticles Using Pulsed Laser Ablation in Liquid: A Review,” Nanomaterials 12(13), 2144 (2022).

31. V. A. Svetlichnyi, A. V. Shabalina, I. N. Lapin, and D. A. Goncharova, “Metal oxide nanoparticle preparation by pulsed laser ablation of metallic targets in liquid,” Chapter 11 in Applications of Laser Ablation–Thin Film Deposition, Nanomaterial Synthesis and Surface Modification, D. Yang (Ed.), IntechOpen, London, UK, 245–263 (2016).

32. C. Senthamil, J. Hemalatha, S. Nandhabala, A. Nivetha, C. Sakthivel, and I. Prabha, “Multifunctionalized Metal Chalcogenides and Their Roles in Catalysis and Biomedical Applications,” ChemistrySelect 7(46), e202203394 (2022).

33. M. Ensoylu, H. Atmaca, and A. M. Deliormanlı, “Fabrication and in vitro characterization of macroporous WS2/ bioactive glass scaffolds for biomedical applications,” Journal of the Australian Ceramic Society 58(2), 397–409 (2022).

34. X. Zhou, H. Sun, and X. Bai, “Two-Dimensional Transition Metal Dichalcogenides: Synthesis, Biomedical Applications and Biosafety Evaluation,” Frontiers in Bioengineering and Biotechnology 8, 236 (2020).

35. S. Wang, J. Zhao, H. Yang, C. Wu, F. Hu, H. Chang, G. Li, D. Ma, D. Zou, and M. Huang, “Bottom-up synthesis of WS2 nanosheets with synchronous surface modification for imaging guided tumor regression,” Acta Biomaterialia 58, 442–454 (2017).

36. L. Cheng, J. Liu, X. Gu, H. Gong, X. Shi, T. Liu, C. Wang, X. Wang, G. Liu, H. Xing, W. Bu, B. Sun, and Z. Liu, “PEGylated WS2 Nanosheets as a Multifunctional Theranostic Agent for in vivo Dual-Modal CT/Photoacoustic Imaging Guided Photothermal Therapy,” Advanced Materials 26(12), 1886–1893 (2014).

37. Z. Zohreband, M. Adeli, and A. Zebardasti, “Self-healable and flexible supramolecular gelatin/MoS2 hydrogels with molecular recognition properties,” International Journal of Biological Macromolecules 182, 2048–2055 (2021).

38. K. Kasinathan, K. Marimuthu, B. Murugesan, N. Pandiyan, B. Pandi, S. Mahalingam, and B. Selvaraj, “Cyclodextrin functionalized multi-layered MoS2 nanosheets and its biocidal activity against pathogenic bacteria and MCF-7 breast cancer cells: Synthesis, characterization and in-vitro biomedical evaluation,” Journal of Molecular Liquids 323, 114631 (2021).

39. M. Xie, N. Yang, J. Cheng, M. Yang, T. Deng, Y. Li, and C. Feng, “Layered MoS2 nanosheets modified by biomimetic phospholipids: Enhanced stability and its synergistic treatment of cancer with chemo-photothermal therapy,” Colloids and Surfaces B: Biointerfaces 187, 110631 (2020).

40. T. Liu, Z. Liu, “2D MoS 2 Nanostructures for Biomedical Applications,” Advanced Healthcare Materials 7(8), 1701158 (2018).

41. M. Liu, H. Zhu, Y. Wang, C. Sevencan, and B. L. Li, “Functionalized MoS2-Based Nanomaterials for Cancer Phototherapy and Other Biomedical Applications,” ACS Materials Letters 3(5), 462–496 (2021).

42. H. Labiadh, K. Lahbib, S. Hidouri, S. Touil, and R. Ben Chaabane, “Insight of ZnS nanoparticles contribution in different biological uses,” Asian Pacific Journal of Tropical Medicine 9(8), 757–762 (2016).

43. M. Stefan, C. Leostean, O. Pana, M. Suciu, A. Popa, D. Toloman, S. Macavei, C. Bele, F. Tabaran, and L. Barbu-Tudoran, “Synthesis and characterization of Fe3O4–ZnS:Mn nanocomposites for biomedical applications,” Materials Chemistry and Physics 264, 124474 (2021).

44. W. Guo, N. Chen, C. Dong, Y. Tu, J. Chang, and B. Zhang, “One-pot synthesis of hydrophilic ZnCuInS/ZnS quantum dots for in vivo imaging,” RSC Advances 3(24), 9470–9475 (2013).

45. B. Han, W. H. Fang, S. Zhao, Z. Yang, and B. X. Hoang, “Zinc sulfide nanoparticles improve skin regeneration,” Nanomedicine: Nanotechnology, Biology and Medicine 29, 102263 (2020).

46. F. Chekin, M. Yazdaninia, “A sensor based on incorporating Ni2+ into ZnO nanoparticles-multi wall carbon nanotubes-poly methyl metacrylat nanocomposite film modified carbon paste electrode for determination of carbohydrates,” Russian Journal of Electrochemistry 50(10), 967–973 (2014).

47. L. Fang, B. Liu, L. Liu, Y. Li, K. Huang, and Q. Zhang, “Direct electrochemistry of glucose oxidase immobilized on Au nanoparticles-functionalized 3D hierarchically ZnO nanostructures and its application to bioelectrochemical glucose sensor,” Sensors and Actuators B: Chemical 222, 1096–1102 (2016).

48. X. Zhang, R. Zhang, A. Yang, Q. Wang, R. Kong, and F. Qu, “Aptamer based photoelectrochemical determination of tetracycline using a spindle-like ZnO-CdS@Au nanocomposite,” Microchimica Acta 184(11), 4367–4374 (2017).

49. M. Kulkarni, A. Mazare, E. Gongadze, Š. Perutkova, V. Kralj-Iglič, I. Milošev, P. Schmuki, A. Iglič, and M. Mozetič, “Titanium nanostructures for biomedical applications,” Nanotechnology 26(6), 062002 (2015).

50. R. Canaparo, F. Foglietta, T. Limongi, and L. Serpe, “Biomedical Applications of Reactive Oxygen Species Generation by Metal Nanoparticles,” Materials 14(1), 53 (2020).

51. M. H. Nia, M. Rezaei-Tavirani, A. R. Nikoofar, H. Masoumi, R. Nasr, H. Hasanzadeh, M. Jadidi, and M. Shadnush, “Stabilizing and dispersing methods of TiO2 nanoparticles in biological studies,” Journal of Paramedical Sciences 6(2), 96–105 (2015).

52. Z. Youssef, R. Vanderesse, L. Colombeau, F. Baros, T. Roques Carmes, C. Frochot, H. Wahab, J. Toufaily, T. Hamieh, S. Acherar, and A. M. Gazzali, “The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy,” Cancer Nanotechnology 8, 6 (2017).

53. D. Tan, S. Zhou, J. Qiu, and N. Khusro, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 17, 50–68 (2013).

54. M. S. S. Bharati, B. Chandu, and S. V. Rao, “Explosives sensing using Ag–Cu alloy nanoparticles synthesized by femtosecond laser ablation and irradiation,” RSC Advances 9(3), 1517–1525 (2019).

55. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays,” Journal of Immunological Methods 65(1–2), 55–63 (1983).

56. C. M. Hoo, N. Starostin, P. West, and M. L. Mecartney, “A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions,” Journal of Nanoparticle Research 10, 89–96 (2008).

57. M. Kaasalainen, V. Aseyev, E. von Haartman, D. Ş. Karaman, E. Mäkilä, H. Tenhu, J. Rosenholm, and J. Salonen, “Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering,” Nanoscale Research Letters 12(1), 74 (2017).

58. N. P. Truong, M. R. Whittaker, C. W. Mak, and T. P. Davis, “The importance of nanoparticle shape in cancer drug delivery,” Expert Opinion on Drug Delivery 12(1), 129–142 (2015).

59. A. L. Popov, N. M. Zholobak, O. I. Balko, O. B. Balko, A. B. Shcherbakov, N. R. Popova, O. S. Ivanova-Polezhaeva, A. E. Baranchikov, and V. K. Ivanov, “Photo-induced toxicity of tungsten oxide photochromic nanoparticles,” Journal of Photochemistry and Photobiology B: Biology 178, 395–403 (2018).

60. S. Chinde, N. Dumala, M. F. Rahman, S. S. K. Kamal, S. I. Kumari, M. Mahboob, and P. Grover, “Toxicological assessment of tungsten oxide nanoparticles in rats after acute oral exposure,” Environmental Science and Pollution Research 24(15), 13576–13593 (2017).

61. A. L. Popov, B. Han, A. M. Ermakov, I. V. Savintseva, O. N. Ermakova, N. R. Popova, A. B. Shcherbakov, T. O. Shekunova, O. S. Ivanova-Polezhaeva, D. Kozlov, A. E. Baranchikov, and V. K. Ivanov, “PVP-stabilized tungsten oxide nanoparticles: pH sensitive anti-cancer platform with high cytotoxicity,” Materials Science and Engineering: C 108, 110494 (2020).

62. Y. L. Gan, L. Wang, and R. P. Wang, “Creation of ZnS nanoparticles by laser ablation in water,” Applied Physics A 122(104), 104 (2016).

63. A. J. Haltner, C. S. Oliver, “Effect of water vapor on friction of molybdenum disulfide,” Industrial & Engineering Chemistry Fundamentals 5(3), 348–355 (1966).

64. F. Ye, D. Chang, A. Ayub, K. Ibrahim, A. Shahin, R. Karimi, S. Wettig, J. Sanderson, and K. P. Musselman, “Synthesis of two-dimensional plasmonic molybdenum oxide nanomaterials by femtosecond laser irradiation,” Chemistry of Materials 33(12), 4510–4521 (2021).

65. F. Ye, A. Ayub, D. Chang, R. Chernikov, Q. Chen, R. Karimi, S. Wettig, J. Sanderson, and K. P. Musselman, “Molybdenum Blues with Tunable Light Absorption Synthesized by Femtosecond Laser Irradiation of Molybdenum Trioxide in Water/Ethanol Mixtures,” Advanced Optical Materials 10(23), 2201304 (2022).

66. H. Wu, R. Yang, B. Song, Q. Han, J. Li, Yi. Zhang, Ya. Fang, R. Tenne, and C. Wang, “Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water,” ACS Nano 5(2), 1276–1281 (2011).

67. J. M. George, A. Antony, and B. Mathew, “Metal oxide nanoparticles in electrochemical sensing and biosensing: a review,” Microchimica Acta 185(7), 358 (2018).

68. C. Jin, Y. Tang, F. G. Yang, X. L. Li, S. Xu, X. Y. Fan, Y. Y. Huang, and Y. J. Yang, “Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase,” Biological Trace Element Research 141(1), 3–15 (2011).

69. Y. V. Novakovskaya, “Theoretical estimation of the ionization potential of water in condensed phase. II. Superficial water layers,” Protection of Metals 43(1), 22–33 (2007).

70. O. Dutuit, A. Tabche-Fouhaile, I. Nenner, H. Frohlich, and P. M. Guyon, “Photodissociation processes of water vapor below and above the ionization potential,” The Journal of Chemical Physics 83(2), 584–596 (1985).

71. D. A. Kochuev, K. S. Khorkov, A. V. Ivashchenko, V. G. Prokoshev, and S. M. Arakelian, “Formation of microspheres under the action of femtosecond laser radiation on titanium samples in hydrocarbons,” Journal of Physics: Conference Series 951(1), 012015 (2018).

72. D. A. Kochuev, K. S. Khorkov, D. V. Abramov, S. M. Arakelian, and V. G. Prokoshev, “Titanium-Carbide Formation in a Liquid Hydrocarbon Medium by Femtosecond Laser Irradiation,” Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 12(6), 1220–1223 (2018).

73. D. A. Kochuev, A. S. Chernikov, R. V. Chkalov, A. V. Prokhorov, and K. S. Khorkov, “Deposition of GaN nanoparticles on the surface of a copper film under the action of electrostatic field during the femtosecond laser ablation synthesis in ammonia environment,” Journal of Physics: Conference Series 2131(5), 052089 (2021).

74. A. S. Chernikov, D. A. Kochuev, R. V. Chkalov, A. V. Egorova, and D. G. Chkalova, “Ga2O3 and GaN nanoparticles synthesis by femtosecond laser ablation in ammonia environment,” Proceedings of 2022 International Conference Laser Optics, 20–24 June 2022, Saint Petersburg, Russian Federation (2022).

75. A. Y. Gerasimenko, A. V. Kuksin, Y. P. Shaman, E. P. Kitsyuk, Y. O. Fedorova, A. V. Sysa, A. A. Pavlov, and O. E. Glukhova, “Electrically Conductive Networks from Hybrids of Carbon Nanotubes and Graphene Created by Laser Radiation,” Nanomaterials 11(8), 1875 (2021).

76. M. S. Savelyev, A. Y. Gerasimenko, P. N. Vasilevsky, Y. O. Fedorova, T. Groth, G. N. Ten, and D. V. Telyshev, “Spectral analysis combined with nonlinear optical measurement of laser printed biopolymer composites comprising chitosan/SWCNT,” Analytical Biochemistry 598, 113710 (2020).

77. A. Y. Gerasimenko, U. E. Kurilova, I. A. Suetina, M. V. Mezentseva, A. V. Zubko, M. I. Sekacheva, and O. E. Glukhova, “Laser Technology for the Formation of Bioelectronic Nanocomposites Based on Single-Walled Carbon Nanotubes and Proteins with Different Structures, Electrical Conductivity and Biocompatibility,” Applied Sciences 11(17), 8036 (2021).

78. A. S. Chernikov, G. I. Tselikov, M. Y. Gubin, A. V. Shesterikov, K. S. Khorkov, A. V. Syuy, G. A. Ermolaev, I. S. Kazantsev, R. I. Romanov, A. M. Markeev, A. A. Popov, G. V. Tikhonowski, O. O. Kapitanova, D. A. Kochuev, A. Yu. Leksin, D. I. Tselikov, A. V. Arsenin, A. V. Kabashin, V. S. Volkov, and A. V. Prokhorov, “Tunable optical properties of transition metal dichalcogenide nanoparticles synthesized by femtosecond laser ablation and fragmentation,” Journal of Materials Chemistry C 10 (2023).

79. L. Wang, Y. Li, L. Zhao, Z. Qi, J. Gou, S. Zhang, and J. Z. Zhang, “Recent advances in ultrathin two-dimensional materials and biomedical applications for reactive oxygen species generation and scavenging,” Nanoscale 12(38), 19516–19535 (2020).

80. S. Kwiatkowski, B. Knap, D. Przystupski, J. Saczko, E. Kędzierska, K. Knap-Czop, J. Kotlińska, O. Michel, K. Kotowski, and J. Kulbacka, “Photodynamic therapy–mechanisms, photosensitizers and combinations,” Biomedicine & Pharmacotherapy 106, 1098–1107 (2018).

81. J. L. Paris, A. Baeza, and M. Vallet-Regí, “Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics,” Expert Opinion on Drug Delivery 16(10), 1095–1112 (2019).

82. M. Sharifi, W. C. Cho, A. Ansariesfahani, R. Tarharoudi, H. Malekisarvar, S. Sari, S. H. Bloukh, Z. Edis, M. Amin, J. P. Gleghorn, T. L. M. ten Hagen, and M. Falahati, “An updated review on EPR-based solid tumor targeting nanocarriers for cancer treatment,” Cancers 14(12), 2868 (2022).

83. T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu, “Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer,” Advanced Materials 26(21), 3433–3440 (2014).

84. I. Ocsoy, D. Tasdemir, S. Mazicioglu, C. Celik, A. Katı, and F. Ulgen, “Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications,” Materials Letters 212, 45–50 (2018).

85. S. Wang, J. Zhao, H. Yang, C. Wu, F. Hu, H. Chang, G. Li, D. Ma, D. Zou, and M. Huang, “Bottom-up synthesis of WS2 nanosheets with synchronous surface modification for imaging guided tumor regression,” Acta Biomaterialia 58, 442–454 (2017).

© 2014-2023 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+