Molecular Aggregation of Aluminum Phthalocyanine Chloride in Organic and Water-Organic Media

Inna V. Klimenko orcid (Login required)
N.M. Emanuel Institute for Biochemical Physics Russian Academy of Sciences, Moscow, Russia

Tatiana Yu. Astakhova orcid
N.M. Emanuel Institute for Biochemical Physics Russian Academy of Sciences, Moscow, Russia

Elena N. Timokhina orcid
N.M. Emanuel Institute for Biochemical Physics Russian Academy of Sciences, Moscow, Russia

Anton V. Lobanov orcid
N.M. Emanuel Institute for Biochemical Physics Russian Academy of Sciences, Moscow, Russia
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Paper #8120 received 27 Feb 2023; revised manuscript received 1 Jun 2023; accepted for publication 2 Jun 2023; published online 9 Jul 2023.


The process of aluminum phthalocyanine chloride (AlClPc) aggregation in water and water-organic media was studied both by quantum mechanical theoretical calculations and experimental methods of optical absorption and fluorescence spectroscopy. The structures of AlClPc in the monomeric and dimerized (H- and J-aggregates) states in the gas phase and in both N,N-dimethylformamide (DMF) and DMF-water binary solution were calculated by the electron density functional theory (DFT) method. The absorption and fluorescence spectra of these structures were calculated in time-dependent electron DFT approximation. Comparing all data obtained, conclusions about the change in the aggregation state of AlClPc were drawn. Results demonstrate depending AlClPc photophysical parameters on its monomer/dimer ratio in solution, which is determined by concentration of the dye and water in the system. The experimental results obtained for water-organic medium indicate the existence of a critical water concentration (~ 7.8 %), at which the ratio of monomers and dimers (J-aggregates) of AlClPc changes dramatically. In AlClPc-DMF system the dye is completely in monomeric form. The results of the study make it possible to predict the aggregation behavior of AlClPc complexes in water-organic media, as well as to control and manage their aggregation behavior.


aluminum phthalocyanine chloride; water-organic media; aggregation process; theoretical calculations; dimers; photophysical properties

Full Text:



1. I. Rosenthal, “Phthalocyanines as photodynamic sensitizers,” Photochemistry and Photobiology 53, 859–870 (1991).

2. I. V. Klimenko, A. V. Lobanov, “Photosensitizing properties of supramolecular systems based on chlorin e6,” Journal of Biomedical Photonics & Engineering 2(4), 040310 (2016).

3. Z. Zhou, J. Song, L. Nie, and X. Chen, “Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy,” Chemical Society Reviews 45, 6597–6626 (2016).

4. L. Lin X. Song, X. Dong, and B. Li, “Nano-photosensitizers for enhanced photodynamic therapy,” Photodiagnosis and Photodynamic Therapy 36, 102597 (2021).

5. S. B. Brown, T. G. Truscott, “New light on cancer therapy,” Chemistry in Britain 29(11), 955–958 (1993).

6. R. Bonnett (Ed.), Chemical Aspects of Photodynamic Therapy, Gordon and Breach Science Publishers, Amsterdam (2000). ISBN 90-5699-248-1.

7. A. Ogunsipe, T. Nyokong, “Effects of central metal on the photophysical and photochemical properties of non-transition metal sulfophthalocyanine,” Journal of Porphyrins and Phthalocyanines 9(2), 121–129 (2005).

8. Z. A. Carneir, J. C. de Moraes, F. P. Rodrigues, R. G. de Lima, C. Curti, Z. N. da Rocha, M. Paulo, L. M. Bendhack, A. C. Tedesco, A. L. B. Formiga, and R. S. da Silva, “Photocytotoxic activity of a nitrosyl phthalocyanine ruthenium complex – A system capable of producing nitric oxide and singlet oxygen,” Journal of Inorganic Biochemistry 105(8), 1035–1043 (2011).

9. C. Jing, R. Wang, H. Ou, A. Li, Y. An, S. Guo, and L. Shi, “Axial modification inhibited H-aggregation of phthalocyanine in polymeric micelles for enhanced PDT efficacy,” Chemical Communications 54(32), 3985–3988 (2018).

10. A. Braun, J. Tcherniac, “Uber die Produckte der Einwirkung von Acetanhydrid auf Phthalamid,” Berichte der deutschen chemischen Gesellschaft 40(2), 2709–2714 (1907).

11. H. S. Nalwa (Ed.), Supramolecular Photosensitive and Electroactive Materials, 1st ed., San Diego, USA (2001). ISBN: 9780080542119.

12. M. van Leeuwen, A. Beeby, I. Fernandes, and S. H. Ashworth, “The photochemistry and photophysics of a series of alpha octa(alkyl-substituted) silicon, zinc and palladium phthalocyanines,” Photochemical & Photobiological Sciences 13, 62–69 (2014).

13. C. G. Claessens, U. Hahn, and T. Torres, “Phthalocyanines: From Outstanding Electronic Properties to Emerging Applications,” The Chemical Record 8(2), 75–97(2008).

14. F. Cong, B. Ning, Y. Ji, X. Wang, F. Ke, Y. Liu, X. Cui, and B. Chen, “The facile synthesis and characterization of tetraimido-substituted zinc phthalocyanines,” Dyes and Pigments 77(3), 686–690 (2008).

15. R. Medyouni, B. Hallouma, L. Mansour, S. Al-Quraishy, and N. Hamdi, “DBU-catalysed synthesis of metal-free phthalocyanines and metallophthalocyanines containing 2(3,4-dimethoxyphenyl)ethanol and 4-hydroxybenzaldehyde groups: characterisation, antimicrobial properties and aggregation behaviour,” Journal of Chemical Research 41(5), 291–295 (2017).

16. T. M. Tsubone, G. Braga, B. H. Vilsinski, A. P. Gerola, N. Hioka, A. L. Tessaro, and W. Caetano, “Aggregation of Aluminum Phthalocyanine Hydroxide in Water/Ethanol Mixtures,” Journal of the Brazilian Chemical Society 25(5), 890–897 (2014).

17. I. V. Klimenko, E. A. Trusova, A. N. Shchegolikhin, A. V. Lobanov, and L. V. Jurina, “Surface modification of graphene sheets with aluminum phthalocyanine complex,” Fullerenes, Nanotubes and Carbon Nanostructures 30(1), 133–139 (2022).

18. J. M. Dąbrowski, L. G. Arnaut, “Photodynamic therapy (PDT) of cancer: from a local to a systemic treatment,” Photochemical & Photobiological Sciences 14(10), 1765–1780 (2015).

19. K. Palewska, J. Sworakowski, and J. Lipiński, “Molecular aggregation in soluble phthalocyanines – chemical interactions vs. π-stacking,” Optical Materials 34(10), 1717–1724 (2012).

20. I. R. Calori, A. C. Tedesco, “Lipid vesicles loading aluminum phthalocyanine chloride: Formulation properties and disaggregation upon intracellular delivery,” Journal of Photochemistry and Photobiology B: Biology 160, 240–247 (2016).

21. M.-S. Liao, S. Scheiner, “Electronic Structure and Bonding in Metal Phthalocyanines, Metal = Fe, Co, Ni, Cu, Zn, Mg,” The Journal of Chemical Physics 114(2), 9780−9791 (2001).

22. X. Lu, K. W. Hipps, X. D. Wang, and U. Mazur, “Scanning tunneling microscopy of metal phthalocyanines: d7 and d9 cases,” Journal of the American Chemical Society 118(30), 7197−7202 (1996).

23. S. Feng, N. Luo, A. Tang, W. Chen, Y. Zhang, S. Huang, and W. Dou, “Phthalocyanine and metal phthalocyanines adsorbed on graphene: a density functional study,” The Journal of Physical Chemistry C 123(27), 16614−16620 (2019).

24. J. Rak, P. Pouckova, J. Benes, and D. Vetvicka, “Drug delivery systems for phthalocyanines for photodynamic therapy,” Anticancer Research 39(7), 3323–3339 (2019).

25. G. Swart, E. Fourie, and J. Swarts, “Octakis(dodecyl)phthalocyanines: Influence of Peripheral versus Non-Peripheral Substitution on Synthetic Routes, Spectroscopy and Electrochemical Behaviour,” Molecules 27(5), 1529 (2022).

26. G. Gümrükçü, G. K. Karaoğlan, A. Erdoğmuş, A. Gül, and U. Avcıata, “Photophysical, Photochemical, and BQ Quenching Properties of Zinc Phthalocyanines with Fused or Interrupted Extended Conjugation,” Journal of Chemistry 2014, 435834 (2014).

27. I. J. MacDonald, T. J. Dougherty, “Basic principles of photodynamic therapy,” Journal of Porphyrins and Phthalocyanines 5(2), 105–129 (2001).

28. J. P. Mensing, C. Sriprachuabwong, A. Wisitsoraat, T. Kerdcharoen, and A. Tuantranont, “Phthalocyanine/graphene hybrid-materials for gas sensing in bio-medical applications,” in the 4th 2011 Biomedical Engineering International Conference, 29–31 January 2012, Chiang Mai, Thailand, 190–193 (2012).

29. G. Zhang, Y. Zhang, A. Tan, Y. Yang, and M. Tian, “Effects of MN4- type coordination structure in metallophthalocyanine for bioInspired oxidative desulfurization performance,” Molecules 27(3), 904 (2022).

30. M. Cavazzini, G. Pozzi, S. Quici, and I. Shepperson, “Fluorous biphasic oxidation of sulfides catalysed by (salen)manganese(III) complexes,” Journal of Molecular Catalysis A: Chemical 204–205, 433–441 (2003).

31. M. J. Schultz, M. S. Sigman, “Recent advances in homogeneous transition metal-catalyzed aerobic alcohol oxidations,” Tetrahedron 62(35), 8227–8241 (2006).

32. H. Cao, M. Gong, M. Wang, Q. Tang, L. Wang, and X. Zheng, “Steady/transient state spectral researches on the solvent-triggered and photo-induced novel properties of metal-coordinated phthalocyanines,” RSC Advances 12(10), 5964–5970 (2022).

33. A. Jlali, C. Jablaoui, M. Lahouel, and B. Jamoussi, “New Zinc (II) Phthalocyanines Substituents: Synthesis, Characterization, Aggregation Behavior, Electronic and Antibacterial Properties,” International Journal of Science and Research 5, 1750–1756 (2016).

34. N. B. Sul’timova, P. P. Levin, A. V. Lobanov, and A. M. Muzafarov, “Laser photolysis study of the triplet states of phthalocyanines on the surface of silica nanoparticles in aqueous solutions,” High Energy Chemistry 47(3), 98–102 (2013).

35. K. Grodowska, A. Parczewski, “Organic solvents in the pharmaceutical industry,” Acta Poloniae Pharmaceutica. Drug Research 67(1), 3–12 (2010).

36. E. I. Olivier, D. du Toit, and J. H. Hamman, “Development of an analytical method for the evaluation of N,N-dimethylformamide in dosage form design,” Die Pharmazie-An International Journal of Pharmaceutical Sciences 62(10), 735–738 (2007).

37. E. A. Trusova, I. V. Klimenko, A. M. Afzal, A. N. Shchegolikhin, and L. V. Jurina, “Comparison of oxygen-free graphene sheets obtained in DMF and DMF-aqua media,” New Journal of Chemistry 45(23), 10448–10458 (2021).

38. M. E. Alea-Reyes, M. Rodrigues, A. Serra, M. Mora, M. L. Sagrista, A. Gonzalez, S. Duran, M. Duch, J. A. Plaza, E. Valles, D. A. Russell, and L. Perez-Garcia, “Nanostructured materials for photodynamic therapy: synthesis, characterization and in vitro activity,” RSC Advances 7(28), 16963–16976 (2017).

39. P. Vallecorsa, G. D. Venosa, M. B. Ballatore, D. Ferreyra, L. Mamone, D. Sáenz, G. Calvo, E. Durantini, and A. Casas, “Novel meso-substituted porphyrin derivatives and its potential use in photodynamic therapy of cancer,” BMC Cancer 21, 547 (2021).

40. A. V. Lobanov, G. S. Dmitrieva, N. B. Sul’timova, and P. P. Levin, “Aggregation and Photophysical Properties of Phthalocyanines in Supramolecular Complexes,” Russian Journal of Physical Chemistry B 8, 272–276 (2014).

41. N. A. Kuznetsova, N. S. Gretsova, V. M. Derkacheva, O. L. Kaliya, and E. A. Lukyanets, “Sulfonated phthalocyanines: aggregation and singlet oxygen quantum yield in aqueous solutions,” Journal of Porphyrins and Phthalocyanines 7(03), 147–154 (2003).

42. C. C. Jayme, I. R. Calori, E. M. F. Cunha, and A. C. Tedesco, “Evaluation of aluminum phthalocyanine chloride and DNA interactions for the design of an advanced drug delivery system in photodynamic therapy,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 201, 242–248 (2018).

43. N. S. Lebedeva, O. V. Petrova, A. I. Vyugin, V. E. Maizlish, and G. P. Shaposhnikov, “Peculiarities of solvation interaction of water-soluble metallophthalocyanines with ethanol,” Thermochimica Acta 417(1), 127–132 (2004).

44. Q. Li, Z. Wang, Q. Liang, M. Zhou, S. Xu, Z. Li, and D. Sun, “Tetra-substituted cobalt (II) phthalocyanine/multi-walled carbon nanotubes as new efficient catalyst for the selective oxidation of styrene using tert-butyl hydroperoxide,” Fullerenes, Nanotubes and Carbon Nanostructures 28(10), 799–807 (2020).

45. T. Nyokong, “Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines,” Coordination Chemistry Reviews 251(13-14), 1707−1722 (2007).

46. J. Janczak, “Water-involved hydrogen bonds in dimeric supramolecular structures of magnesium and zinc phthalocyaninato complexes,” ACS Omega 4(2), 3673−3683 (2019).

47. H. K. Moon, M. Son, J. E. Park, S. M. Yoon, S. H. Lee, and H. C. Choi, “Significant increase in the water dispersibility of zinc phthalocyanine nanowires and applications in cancer phototherapy,” NPG Asia Materials 4(4), e12 (2012).

48. F. L. Primo, M. M. A. Rodrigues, A. R. Simioni, M. V. L. B. Bentley, P. C. Morais, and A. C. Tedesco, “In vitro studies of cutaneous retention of magnetic nanoemulsion loaded with zinc phthalocyanine for synergic use in skin cancer treatment,” Journal of Magnetism and Magnetic Materials 320(14), e211–e214 (2008).

49. O. I. Koifman, M. Hanack, S. A. Syrbu, and A. V. Lyubimtsev, “Phthalocyanine conjugates with carbohydrates: synthesis and aggregation in aqueous solutions,” Russian Chemical Bulletin 62(4), 896–917 (2013).

50. M. A. Gradova, I. I. Ostashevskaya, O. V. Gradov, A. V. Lobanov, and V. B. Ivanov, “Photophysical properties and photochemical activity of metal phthalocyanines adsorbed on modified montmorillonite macroheterocycles,” Macroheterocycles 11(4), 404–411 (2018).

51. E. P. O. Silva, E. D. Santos, C. S. Gonçalves, M. A. G. Cardoso, C. P. Soares, and M. Beltrame, “Zinc phthalocyanineconjugated with bovine serum albumin mediated photodynamic therapy of human larynx carcinoma,” Laser Physics 26, 105601 (2016).

52. E. Güzel, A. Atsay, S. Nalbantoglu, N. Şaki, A. L. Dogan, A. Gül, and M. B. Koçak, “Synthesis, characterization and photodynamic activity of a new amphiphilic zinc phthalocyanine,” Dyes and Pigments 97(1), 238–243 (2013).

53. I. V. Klimenko, A. V. Lobanov, E. A. Trusova, and A. N. Schegolikhin, “New hybrid oxygen-free graphene and phthalocyanine aluiminum structures: preparation and physicochemical properties,” Russian Journal of Physical Chemistry B 13, 964–968 ( 2019).

54. F. Nees, F. Wennmohs, U. Becker, and C. Riplinger, “The ORCA quantum chemistry program package,” The Journal of Chemical Physics 152(22), 224108 (2020).

55. J. P. Perde, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters 77(18), 3865–3868 (1996).

56. F. Weigend, R. Ahlrichs, “Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy,” Physical Chemistry Chemical Physics 7(18), 3297–3305 (2005).

57. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” The Journal of Chemical Physics 132(15), 154104 (2010).

58. M. Ernzerhof, G. E. Scuseria, “Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional,” The Journal of Chemical Physics 110(11), 5029–5036 (1999).

59. V. Barone, M. Cossi, “Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model,” The Journal of Physical Chemistry A 102(11), 1995–2001 (1998).

60. C. Adamo, D. Jacquemin, “The calculations of excited-state properties with time-dependent density functional theory,” Chemical Society Reviews 42(3), 845–856 (2013).

61. M. Kasha, “Energy transfer mechanisms and the molecular exciton model for molecular aggregates,” Radiation Research 20(1), 55–71 (1963).

62. A. V. Lobanov, N. B. Sul’timova, P. P. Levin, I. B. Meshkov, and M. Y. Melnikov, “Aluminum phthalocyanine on silica nanoparticles: aggregation and excited states,” Macroheterocycles 8(3), 279–283 (2015).

63. K. Kameyama, M. Morisue, A. Satake, and Y. Kobuke, “Highly fluorescent self-coordinated phthalocyanine dimers,” Angewandte Chemie International Edition 44(30), 4763–4766 (2005).

64. F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials,” Angewandte Chemie International Edition 50(15), 3376–3410 (2011).

65. P. P. Pompa, G. Ciccarella, J. Spadavecchia, R. Cingolani, G. Vasapollo, and R. Rinaldi, “Spectroscopic investigation of inner filter effects by phthalocyanine solutions,” Journal of Photochemistry and Photobiology A: Chemistry 163(1-2), 113–120 (2004).

66. S. FitzGerald, C. Farren, C. F. Stanley, A. Beeby, and M. R. Bryce, “Fluorescent phthalocyanine dimers—a steady state and flash photolysis study,” Photochemical & Photobiological Sciences 1(8), 580–587 (2002).

67. A. Y. Tolbin, V. B. Sheinin, O. I. Koifman, and L. G. Tomilova, “Synthesis of stable dimeric phthalocyanine J-type complexes and investigation of their nucleophilic properties,” Macroheterocycles 8(2), 150–155 (2015).

68. P. N. Vasilevsky, E. S. Davydova, D. I. Podshivalova, and M. S. Saveliev, “Nonlinear optical response of Phthalocyanine J-type dimeric complexes of Mg in DMF using pulsed femtosecond radiation,” in 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 26–29 January 2021, Saint Petersburg, Moscow, Russia, 2902–2905 (2021).

69. T. Strenalyuk, S. Samdal, and H. V. Volden, “Molecular Structures of Chloro(phthalocyaninato)-aluminum(III) and -gallium(III) as determined by gas electron diffraction and quantum chemical calculations: quantum chemical calculations on fluoro(phthalocyaninato)-aluminum(III) and -gallium(III), chloro(tetrakis(1,2,5-thiadiazole)porphyrazinato)-aluminum(III) and -gallium(III) and comparison with their X-ray structures,” The Journal of Physical Chemistry A 112(38), 9075–9082 (2008).

70. I. R. Calori, C. C. Jayme, L. T. Ueno, F. B. C. Machado, and A. C. Tedesco, “Theoretical and experimental studies concerning monomer/aggregates equilibrium of zinc phthalocyanine for future photodynamic action,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 214, 513–521 (2019).

71. G. A. Kumar, J. Thomas, N. V. Unnikrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Optical properties of phthalocyanine molecules in cyano acrylate polymer matrix,” Materials Research Bulletin 36(1–2), 1–8 (2001).

72. Z. Ou, J. Shen, and K. M. Kadish, “Electrochemistry of Aluminum Phthalocyanine: Solvent and Anion Effects on UV−Visible Spectra and Reduction Mechanisms,” Inorganic Chemistry 45(23), 9569–9579 (2006).

73. A. W. Snow, “Phthalocyanine aggregation,” in The Porphyrin Handbook: Phthalocyanines: Properties and Materials, K. M. Kadish, K. M. Smith, and R. Guilard (Eds.), Academic Press, San Diego, 129–176 (2003).

74. S. Dhami, D. Phillips, “Comparison of the photophysics of an aggregating and non-aggregating aluminium phthalocyanine system incorporated into unilamellar vesicles,” Journal of Photochemistry and Photobiology A: Chemistry 100(1–3), 77–84 (1996).

75. J. Parkash, J. H. Robblee, J. Agnew, E. Gibbs, P. Collings, R. F. Pasternack, and J. C. de Paula, “Depolarized Resonance Light Scattering by Porphyrin and Chlorophyll a Aggregates,” Biophysical Journal 74(4), 2089–2099 (1998).

76. D. A. Makarov, N. A. Kuznetsova, O. A. Yuzhakova, L. P. Savvina, O. L. Kaliya, E. A. Lukyanets, V. M. Negrimovskii, and M. G. Strakhovskaya, “Effects of the degree of substitution on the physicochemical properties and photodynamic activity of zinc and aluminum phthalocyanine polycations,” Russian Journal of Physical Chemistry A 83, 1044–1050 (2009).

77. A. V Ziminov, V. K. Mal’tsev, A. A. Sherstyuk, Y. A. Vikent’eva, N. S. Seravin, and S. M. Ramsh, “Synthesis and aggregation of cationic zink and magnesium phthalocyanines containing 4-(3,5-dimethyl-1h-pyrazol-1-yl)phenoxy groups,” Russian Journal of General Chemistry 88(8), 1648–1656 (2018).

© 2014-2023 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+