Dynamic Light Scattering Analysis in Biomedical Research and Applications of Nanoparticles and Polymers

Alexander Knysh
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russian Federation

Pavel Sokolov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russian Federation

Igor Nabiev orcid (Login required)
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russian Federation
Université de Reims Champagne-Ardenne, Reims, France

Paper #8681 received 2 Mar 2023; revised manuscript received 13 Apr 2023; accepted for publication 17 Apr 2023; published online 30 May 2023.


Dynamic light scattering (DLS) is one of the most commonly used photonic methods for estimating the hydrodynamic radius, ζ-potential, polydispersity, and concentrations of nanoparticles (NPs), polymers, and cells, as well as for studying changes in these parameters upon interaction or aggregation of molecules and particles. NPs and polymers are components of numerous drugs, cosmetics, and food industry products. Hence, the monitoring of their physical, chemical, and morphological properties, often related to their functional characteristics and toxicity, are of vital importance. This review deals with the specifics of the DLS method as applied to the analysis of samples of different types and the modifications of this method depending on the characteristics of the samples. The theoretical basis of the DLS method and its applications to the study of NPs, polymers, and their interactions are presented, with the focus on biomedical applications. The last section of the review considers the advantages and limitations of DLS analysis as compared with other photonic analytical methods, as well as future trends in the development of this approach.


dynamic light scattering; nanoparticles; polymers; hybrid materials; ζ-potential; hydrodynamic diameter

Full Text:



1. K. Rebrosova, O. Samek, M. Kizovsky, S. Bernatova, V. Hola, and F. Ruzicka, “Raman Spectroscopy — A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings,” Frontiers in Cellular and Infection Microbiology 12, 866463 (2022).

2. M. A. Kouri, E. Spyratou, M. Karnachoriti, Dimitris Kalatzis, N. Danias, N. Arkadopoulos, I. Seimenis, Y. S. Raptis, A. G. Kontos, and E. P. Efstathopoulos, “Raman Spectroscopy: A Personalized Decision-Making Tool on Clinicians’ Hands for In Situ Cancer Diagnosis and Surgery Guidance,” Cancers 14(5), 1144 (2022).

3. M. H. Simonian, “Spectrophotometric Determination of Protein Concentration,” Current Protocols in Toxicology 21(1), A.3G.1–A.3G.7 (2004).

4. A. M. García-Alegría, I. Anduro-Corona, C. J. Pérez-Martínez, M. A. G. Corella-Madueño, M. L. Rascón-Durán, and H. Astiazaran-Garcia, “Quantification of DNA through the NanoDrop Spectrophotometer: Methodological Validation Using Standard Reference Material and Sprague Dawley Rat and Human DNA,” International Journal of Analytical Chemistry 2020, 8896738 (2020).

5. W. H. Brooks, W. C. Guida, and K. G. Daniel, “The Significance of Chirality in Drug Design and Development,” Current Topics in Medicinal Chemistry 11(7), 760–770 (2011).

6. R. Ding, J. Ying, and Y. Zhao, “An electronic circular dichroism spectroscopy method for the quantification of L – and D – amino acids in enantiomeric mixtures,” Royal Society Open Science 8(3), 201963 (2021).

7. H. S. Son, Y. S. Hong, W. M. Park, M. A. Yu, and C. H. Lee, “A Novel Approach for Estimating Sugar and Alcohol Concentrations in Wines Using Refractometer and Hydrometer,” Journal of Food Science 74(2), C106– C111 (2009).

8. P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab on a Chip 16(4), 634–644 (2016).

9. U. Bulbake, S. Doppalapudi, N. Kommineni, and W. Khan, “Liposomal Formulations in Clinical Use: An Updated Review,” Pharmaceutics 9(2), 12 (2017).

10. Y. Jia, Y. Jiang, Y. He, W. Zhang, J. Zou, K. T. Magar, H. Boucetta, C. Teng, and W. He, “Approved Nanomedicine against Diseases,” Pharmaceutics 15(3) 774 (2023).

11. Y. Yao, Y. Zhou, L. Liu, Y. Xu, Q. Chen, Y. Wang, S. Wu, Y. Deng, J. Zang, and A. Shao, “Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance,” Frontiers in Molecular Biosciences 7, 193 (2020).

12. A. C. Anselmo, and S. Mitragotri, “Nanoparticles in the clinic: An update,” Bioengineering & Translational Medicine 4(3), e10143 (2019).

13. R. Raliya, T. Singh Chadha, K. Haddad, and P. Biswas, “Perspective on Nanoparticle Technology for Biomedical Use,” Current Pharmaceutical Design 22(17), 2481–2490 (2016).

14. J. J. Giner-Casares, M. Henriksen-Lacey, M. Coronado-Puchau, and L. M. Liz-Marzán, “Inorganic nanoparticles for biomedicine: where materials scientists meet medical research,” Materials Today 19(1), 19–28 (2016).

15. H. Moosmüller, W. P. Arnott, “Particle Optics in the Rayleigh Regime,” Journal of the Air & Waste Management Association 59(9), 1028–1031(2009).

16. J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations,” Beilstein Journal of Nanotechnology 9(1), 1050–1074 (2018).

17. M. Kaszuba, M. T. Connah, “Protein and Nanoparticle Characterisation Using Light Scattering Techniques,” Particle & Particle Systems Characterization 23(2), 193–196 (2006).

18. A. Wishard, B. C. Gibb, “Dynamic light scattering – an all-purpose guide for the supramolecular chemist,” Supramolecular Chemistry 31(9), 608–615 (2019).

19. N. Damaschke, H. Nobach, N. Semidetnov, and C. Tropea, “Optical particle sizing in backscatter,” Applied Optics 41(27), 5713–5727 (2002).

20. M. Kaszuba, D. McKnight, M. T. Connah, F. K. McNeil-Watson, and U. Nobbmann, “Measuring sub nanometre sizes using dynamic light scattering,” Journal of Nanoparticle Research 10, 823–829 (2008).

21. A. Kurzhals, K. Wulf, V. Senz, T. Eickner, N. Grabow, and W. Schmidt, “Determination of Infusion Filter Efficiency applying Dynamic Light Scattering,” Current Directions in Biomedical Engineering 8(2), 485–488 (2022).

22. J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross correlation. I. Theory,” The Journal of Chemical Physics 79(4), 1658–1663 (1983).

23. A. V. Malm, J. C. W. Corbett, “Improved Dynamic Light Scattering using an adaptive and statistically driven time resolved treatment of correlation data,” Scientific Reports 9, 13519 (2019).

24. K. Hou, C. Wang, and X. Liu, “Study on Backward Scattering Characteristics of Submicron Particles,” Optics and Photonics Journal 10(5), 79–87 (2020).

25. C. Wang, K. Kou, and J. Yan, “Frequency-shifted nano-particle sizing using laser self-mixing interferometry under linear current tuning,” Laser Physics Letters 19(6), 066202 (2022).

26. J. Herbert, K. Bertling, T. Taimre, A. D. Rakić, and S. Wilson, “Microparticle discrimination using laser feedback interferometry,” Optics Express 26(20), 25778–25792 (2018).

27. K. Zhu, H. Chen, S. Zhang, Z. Shi, Y. Wang, and Y. Tan, “Frequency-Shifted Optical Feedback Measurement Technologies Using a Solid-State Microchip Laser,” Applied Sciences 9(1), 109 (2018).

28. M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers in Medical Science 24, 639–651 (2009).

29. Q. Zhang, J. C. Gamekkanda, A. Pandit, W. Tang, C. Papageorgiou, C. Mitchell, Y. Yang, M. Schwaerzler, T. Oyetunde, R. D. Braatz, A. S. Myerson, and G. Barbastathis, “Extracting particle size distribution from laser speckle with a physics-enhanced autocorrelation-based estimator (PEACE),” Nature Communications 14, 1159 (2023).

30. M. Sadrara, M. Miri, “Scattering of electromagnetic waves by a cluster of charged spherical nanoparticles,” Journal of the Optical Society of America B 33(12), 2552 (2016).

31. J. C. Dyre, “Rayleigh scattering revisited,” Nature Materials 15(11), 1150–1151 (2016).

32. X. Yu, Y. Shi, T. Wang, and X. Sun, “Dust-Concentration Measurement Based on Mie Scattering of a Laser Beam,” PLoS ONE 12(8), e0181575 (2017).

33. Z. Cao, L. Xu, and J. Ding, “Integral inversion to Fraunhofer diffraction for particle sizing,” Applied Optics 48(25), 4842–4850 (2009).

34. J. Vargas-Ubera, J. F. Aguilar, and D. M. Gale, “Reconstruction of particle-size distributions from light-scattering patterns using three inversion methods,” Applied Optics 46(1), 124–132 (2007).

35. C. M. Keck, R. H. Müller, “Size analysis of submicron particles by laser diffractometry - 90% of the published measurements are false,” International Journal of Pharmaceutic 355(1-2), 150–163 (2008).

36. G. Brodie, “Energy Transfer from Electromagnetic Fields to Materials,” Chapter 4 in Electromagnetic Fields and Waves, H. Yeap, and K. Hirasawa (Eds.), IntechOpen, Rijeka, (2019).

37. A. Rahimzadegan, R. Alaee, C. Rockstuhl, and R. W. Boyd, “Minimalist Mie Coefficient Model,” Optics Express 28(11), 16511 (2020).

38. X. Li, L. Xie, and X. Zheng, “The Comparison between the Mie Theory and the Rayleigh Approximation to Calculate the EM Scattering by Partially Charged Sand,” Journal of Quantitative Spectroscopy and Radiative Transfer 113(3), 251–258 (2012).

39. R. Gutiérrez-Cuevas, N. J. Moore, and M. A. Alonso, “Lorenz-Mie Scattering of Focused Light via Complex Focus Fields: An Analytic Treatment,” Physical Review A 97(5), 053848 (2018).

40. L. André Ambrosio, “Symmetry relations in the generalized Lorenz–Mie theory for lossless negative refractive index media,” Journal of Quantitative Spectroscopy and Radiative Transfer 180, 147–153 (2016).

41. D. J. Lockwood, Encyclopedia of Color Science and Technology, Springer, Heidelberg (2016).

42. Y. Yue, Y. Kan, H. Choi, A. Clearfield, and H. Liang, “Correlating hydrodynamic radii with that of two-dimensional nanoparticles,” Applied Physics Letters 107(25), 253103 (2015).

43. J. Zmpitas, J. Gross, “Modified Stokes–Einstein Equation for Molecular Self-Diffusion Based on Entropy Scaling,” Industrial & Engineering Chemistry Research 60(11), 4453–4459 (2021).

44. M. A. Islam, “Einstein – Smoluchowski Diffusion Equation: A Discussion,” Physica Scripta 70(2–3), 120–125 (2004).

45. K. Ishii, T. Iwai, “Theoretical Analysis of Path-Length-Resolved Power Spectrum Measurement Using Low-Coherence Dynamic Light Scattering,” Japanese Journal of Applied Physics 47(11), 8397–8401 (2008).

46. D. Ferreira, R. Bachelard, W. Guerin, R. Kaiser, and M. Fouché, “Connecting field and intensity correlations: The Siegert relation and how to test it,” American Journal of Physics 88(10), 831–837 (2020).

47. G. Derkachov, D. Jakubczyk, K. Kolwas, K. Piekarski, Y. Shopa, and M. Woźniaket, “Dynamic Light Scattering Investigation of Single Levitated Micrometre-Sized Droplets Containing Spherical Nanoparticles,” Measurement 158, 107681 (2020).

48. S. C. Buranay, M. A. Özarslan, and S. S. Falahhesar, “Numerical Solution of the Fredholm and Volterra Integral Equations by Using Modified Bernstein–Kantorovich Operators,” Mathematics 9(11), 1193 (2021).

49. R. Xu, Particle Characterization: Light Scattering Methods, Springer, Dordrecht (2000).

50. M. M. Hoffmann, M. D. Too, M. Vogel, T. Gutmann, and G. Buntkowsky, “Breakdown of the Stokes–Einstein Equation for Solutions of Water in Oil Reverse Micelles,” The Journal of Physical Chemistry B 124(41), 9115–9125 (2020).

51. A. J. Banchio, M. Heinen, P. Holmqvist, and G. Nägeleet, “Short- and Long-Time Diffusion and Dynamic Scaling in Suspensions of Charged Colloidal Particles,” The Journal of Chemical Physics 148(13), 134902 (2018).

52. M. Wang, M. Heinen, and J. F. Brady, “Short-Time Diffusion in Concentrated Bidisperse Hard-Sphere Suspensions,” The Journal of Chemical Physics 142(6), 064905 (2015).

53. A. M. Fiore, J. W. Swan, “Fast Stokesian Dynamics,” Journal of Fluid Mechanics 878, 544–597 (2019).

54. M. Naiim, A. Boualem, C. Ferre, M. Jabloun, A. Jalochaa, and P. Ravier, “Multiangle Dynamic Light Scattering for the Improvement of Multimodal Particle Size Distribution Measurements,” Soft Matter 11(1), 28–32 (2015).

55. C. Geers, L. Rodriguez-Lorenzo, D. A. Urban, C. Kinnear, A. Petri-Fink, and S. Balog, “A New Angle on Dynamic Depolarized Light Scattering: Number-Averaged Size Distribution of Nanoparticles in Focus,” Nanoscale 8(34), 15813–15821 (2016).

56. A. D. Levin, E. A. Shmytkova, and B. N. Khlebtsov, “Multipolarization Dynamic Light Scattering of Nonspherical Nanoparticles in Solution,” The Journal of Physical Chemistry C 121(5), 3070–3077 (2017).

57. M. Alexander, D. G. Dalgleish, “Dynamic Light Scattering Techniques and Their Applications in Food Science,” Food Biophysics 1, 2–13 (2006).

58. A. Sukhanova, S. Bozrova, P. Sokolov, M. Berestovoy, A. Karaulov, and I. Nabiev, “Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties,” Nanoscale Research Letters 13(1), 44 (2018).

59. I. de la Calle, M. Menta, M. Klein, and F. Séby, “Screening of TiO2 and Au Nanoparticles in Cosmetics and Determination of Elemental Impurities by Multiple Techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES),” Talanta 171, 291–306 (2017).

60. M. Y. Chan, Q. M. Dowling, S. J. Sivananthan, and R. M. Kramer, “Particle Sizing of Nanoparticle Adjuvant Formulations by Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA),” in Vaccine Adjuvants. Methods and Protokols, C. B. Fox (Eds.), Humana Press, New York, 239–252 (2017).

61. S. Skoglund, E. Blomberg, I. O. Wallinder, I. Grillo, J. S. Pedersen, and L. M. Bergström, “A Novel Explanation for the Enhanced Colloidal Stability of Silver Nanoparticles in the Presence of an Oppositely Charged Surfactant,” Physical Chemistry Chemical Physics 19(41), 28037–28043 (2017).

62. G. Almeida, O. J. Ashton, L. Goldoni, D, Maggioni, U. Petralanda, N. Mishra, Q. A. Akkerman, I. Infante, H. J. Snaith, and L. Manna, “The Phosphine Oxide Route toward Lead Halide Perovskite Nanocrystals,” Journal of the American Chemical Society 140(44), 14878–14886 (2018).

63. S. T. Moerz, A. Kraegeloh, M. Chanana, and T. Kraus, “Formation Mechanism for Stable Hybrid Clusters of Proteins and Nanoparticles,” ACS Nano 9(7), 6696–6705 (2015).

64. S. P. Yeap, A. L. Ahmad, B. S. Ooi, and J. Lim, “Electrosteric Stabilization and Its Role in Cooperative Magnetophoresis of Colloidal Magnetic Nanoparticles,” Langmuir 28(42), 14878–14891 (2012).

65. J. K. Lim, D. C. J. Chieh, S. A. Jalak, P. Y. Toh, N. H. M. Yasin, B. W. Ng, and A. L. Ahmad, “Rapid Magnetophoretic Separation of Microalgae,” Small 8(11), 1683–1692 (2012).

66. L. C. Gonçalves, A. B. Seabra, M. T. Pelegrino, D. R. de Araujo, J. S. Bernardes, and P. S. Haddad, “Superparamagnetic Iron Oxide Nanoparticles Dispersed in Pluronic F127 Hydrogel: Potential Uses in Topical Applications,” RSC Advances 7(24), 14496–14503 (2017).

67. Y. Gu, M. Yoshikiyo, A. Namai, D. Bonvin, A. Martinez, R. Piñol, P. Téllez, N. J. O. Silva, F. Ahrentorp, C. Johansson, J. Marco-Brualla, R. Moreno-Loshuertos, P. Fernández-Silva, Y. Cui, S. Ohkoshi, and A. Millán, “Magnetic Hyperthermia with ε- Fe2O3 Nanoparticles,” RSC Advances 10(48), 28786–28797 (2020).

68. N. Guarrotxena, O. García, and I. Quijada-Garrido, “Synthesis of Au@polymer Nanohybrids with Transited Core-Shell Morphology from Concentric to Eccentric Emoji-N or Janus Nanoparticles,” Scientific Reports 8(1), 5721 (2018).

69. J. B. Vines, J.-H. Yoon, N.-E. Ryu, D.-J. Lim, and H. Park, “Gold Nanoparticles for Photothermal Cancer Therapy,” Frontiers in Chemistry 7, 167 (2019).

70. R. E. Cavicchi, D. C. Meier, C. Presser, V. M. Prabhu, and S. Guha, “Single Laser Pulse Effects on Suspended-Au-Nanoparticle Size Distributions and Morphology,” The Journal of Physical Chemistry C 117(20), 10866–10875 (2013).

71. T. Zheng, S. Bott, and Q. Huo, “Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation,” ACS Applied Materials & Interfaces 8(33), 21585–21594 (2016).

72. R. Fathima, A. Mujeeb, “Nonlinear Optical Investigations of Laser Generated Gold, Silver and Gold-Silver Alloy Nanoparticles and Optical Limiting Applications,” Journal of Alloys and Compounds 858, 157667 (2021).

73. Y. Zhang, Y. Chen, P. Westerhoff, K. Hristovski, and J. C Crittenden, “Stability of Commercial Metal Oxide Nanoparticles in Water,” Water Research 42(8–9), 2204–2212 (2008).

74. S. Rajkumar, M. Prabaharan, “Theranostics Based on Iron Oxide and Gold Nanoparticles for Imaging- Guided Photothermal and Photodynamic Therapy of Cancer,” Current Topics in Medicinal Chemistry 17(16), 1858–1871 (2017).

75. M. Lehmann, W. Tabaka, T. Möller, A. Oppermann, D. Wöll, D. Volodkin, S. Wellert, and R. von Klitzing, “DLS Setup for in Situ Measurements of Photoinduced Size Changes of Microgel-Based Hybrid Particles,” Langmuir 34(12), 3597–3603 (2018).

76. Z. H. Chen, C. Kim, X. Zeng, S. H. Hwang, J. Jang, and G. Ungar, “Characterizing Size and Porosity of Hollow Nanoparticles: SAXS, SANS, TEM, DLS, and Adsorption Isotherms Compared,” Langmuir 28(43), 15350–15361 (2012).

77. J. C. Wong, L. Xiang, K. H. Ngoi, C. H. Chia, K. S. Jin, and M. Ree, “Quantitative Structural Analysis of Polystyrene Nanoparticles Using Synchrotron X-Ray Scattering and Dynamic Light Scattering,” Polymers 12(2), 477 (2020).

78. P. Eaton, P. Quaresma, C. Soares, C. Neves, M.P. de Almeida, E. Pereira, and P. West, “A direct Comparison of Experimental Methods to Measure Dimensions of Synthetic Nanoparticles,” Ultramicroscopy 182, 179–190 (2017).

79. X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, “A One-Step Homogeneous Immunoassay for Cancer Biomarker Detection Using Gold Nanoparticle Probes Coupled with Dynamic Light Scattering,” Journal of the American Chemical Society 130(9), 2780–2782 (2008).

80. Q. Dai, X. Liu, J. Coutts, L. Austin, and Q. Huo, “A One-Step Highly Sensitive Method for DNA Detection Using Dynamic Light Scattering,” Journal of the American Chemical Society 130(26), 8138–8139 (2008).

81. C. T. Matea, T. Mocan, F. Tabaran, T. Pop, O. Mosteanu, C. Puia, C. Iancu and L. Mocan, “Quantum Dots in Imaging, Drug Delivery and Sensor Applications,” International Journal of Nanomedicine 12, 5421–5431 (2017).

82. D. Geißler, C. Gollwitzer, A. Sikora, C. Minelli, M. Krumrey, and U. Resch-Genger, “Effect of fluorescent staining on size measurements of polymeric nanoparticles using DLS and SAXS,” Analytical Methods 7(23), 9785–9790 (2015).

83. P. Modlitbová, K. Klepárník, Z. Farka, P. Pořízka, P. Skládal, K. Novotný, and J. Kaiser, “Time-Dependent Growth of Silica Shells on CdTe Quantum Dots,” Nanomaterials 8(6), 439 (2018).

84. F. Cao, D. Yu, W. Ma, X. Xu, B. Cai, Y. M. Yang, S. Liu, L. He, Y. Ke, S. Lan, K.-L. Choy, and H. Zeng, “Shining Emitter in a Stable Host: Design of Halide Perovskite Scintillators for X-Ray Imaging from Commercial Concept,” ACS Nano 14(5), 5183–5193 (2020).

85. J. Leinonen, S. Kneifel, and R. J. Hogan, “Evaluation of the Rayleigh–Gans Approximation for Microwave Scattering by Rimed Snowflakes,” Quarterly Journal of the Royal Meteorological Society 144(S1), 77–88 (2018).

86. B. Ankamwar, “Size and Shape Effect on Biomedical Applications of Nanomaterials,” Chapter 4 in Biomedical Engineering – Technical Applications in Medicine, R. Hudak (Ed.), InTechOpen, Rijeka (2012).

87. Y. Chen, Z. Fan, Z. Zhang, W. Niu, C. Li, N. Yang, B. Chen, and H. Zhang, “Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications,” Chemical Reviews 118(13), 6409–6455 (2018).

88. J. Yang, Z. Zeng, J. Kang, S. Betzler, C. Czarnik, X. Zhang, C. Ophus, C. Yu, K. Bustillo, M. Pan, J. Qiu, L.-W. Wang, and H. Zheng, “Formation of Two-Dimensional Transition Metal Oxide Nanosheets with Nanoparticles as Intermediates,” Nature Materials 18(9), 970–976 (2019).

89. H. Zhao, X. Chen, G. Wang, Y. Qiu, and L. Guo, “Two-Dimensional Amorphous Nanomaterials: Synthesis and Applications,” 2D Materials 6(3), 032002 (2019).

90. F. Yang, P. Song, M. Ruan, and W. Xu, “Recent Progress in Two-Dimensional Nanomaterials: Synthesis, Engineering, and Applications,” FlatChem 18, 100133 (2019).

91. Z. Liu, H. Chen, Y. Jia, W. Zhang, H. Zhao, W. Fan, W. Zhang, H. Zhong, Y. Nia, and Z. Guo, “A Two-Dimensional Fingerprint Nanoprobe Based on Black Phosphorus for Bio-SERS Analysis and Chemo-Photothermal Therapy,” Nanoscale 10(39), 18795–18804 (2018).

92. Z. Xie, D. Wang, T. Fan, C. Xing, Z. Li, W. Tao, L. Liu, S. Bao, D. Fan, and H. Zhang, “Black phosphorus Analogue Tin Sulfide Nanosheets: Synthesis and Application as near-Infrared Photothermal Agents and Drug Delivery Platforms for Cancer Therapy,” Journal of Materials Chemistry B 6(29), 4747–4755 (2018).

93. H. Zhang, T. Fan, W. Chen, Y. Li, and B. Wang, “Recent Advances of Two-Dimensional Materials in Smart Drug Delivery Nano-Systems,” Bioactive Materials 5(4), 1071–1086 (2020).

94. J. A. Mariano-Torres, A. López-Marure, M. García-Hernández, G. Basurto-Islas, and M. Á. Domínguez-Sánchez, “Synthesis and characterization of glycerol citrate polymer and yttrium oxide nanoparticles as a potential antibacterial material,” Materials Transactions 59(12), 1915–1919 (2018).

95. M. Lotya, A. Rakovich, J. F. Donegan, and J. N. Coleman, “Measuring the Lateral Size of Liquid-Exfoliated Nanosheets with Dynamic Light Scattering,” Nanotechnology 24(26), 265703 (2013).

96. C. A. Little, C. Batchelor-McAuley, N. P. Young, and R. G. Compton, “Shape and Size of Non-Spherical Silver Nanoparticles: Implications for Calculating Nanoparticle Number Concentrations,” Nanoscale 10(34), 15943–15947 (2018).

97. O. I. Sukharevsky, G. S. Zalevsky, “3-D Electromagnetic Scattering by Ellipsoidal Silver Nanoparticles in Optical Band,” In 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET), Kyiv, UKraine, 152–155 (2018).

98. F. Gao, L. Bai, S. Liu, R. Zhang, J. Zhang, X. Feng, Y. Zheng, and Y. Zhao, “Rationally Encapsulated Gold Nanorods Improving Both Linear and Nonlinear Photoacoustic Imaging Contrast in Vivo,” Nanoscale 9(1), 79–86 (2017).

99. S. Liao, W. Yue, S. Cai, Q. Tang, W. Lu, L. Huang, T. Qi, and J. Liao, “Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective,” Frontiers in Pharmacology 12, 664123 (2021).

100. A. D. Levin, E. A. Shmytkova, “Nonspherical Nanoparticles Characterization by Partially Depolarized Dynamic Light Scattering,” Proceedings of SPIE 9526, 95260P (2015).

101. P. J. Wyatt, “Measurement of Special Nanoparticle Structures by Light Scattering,” Analytical Chemistry 86(15), 7171–7183 (2014).

102. H. Su, C.-A. H. Price, L. Jing, Q. Tian, J. Liu, and K. Qian, “Janus Particles: Design, Preparation, and Biomedical Applications,” Materials Today Bio 4, 100033 (2019).

103. G. Agrawal, R. Agrawal, “Janus Nanoparticles: Recent Advances in Their Interfacial and Biomedical Applications,” ACS Applied Nano Materials 2(4), 1738–1757 (2019).

104. Q. He, H. Vijayamohanan, J. Li, and T. M. Swager, “Multifunctional Photonic Janus Particles,” Journal of the American Chemical Society 144(12), 5661–5667 (2022).

105. J. Wang, X. Chen, F. Lang, L. Yang, D. Qiu, and Z. Yang, “Large Scale Synthesis of Single-Chain/Colloid Janus Nanoparticles with Tunable Composition,” Chemical Communications 56(27), 3875–3878 (2020).

106. H. Cao, Y. Yang, X. Chen, and Z. Shao, “Intelligent Janus nanoparticles for intracellular real-time monitoring of dual drug release,” Nanoscale 8, 6754–6760 (2016).

107. O. Shemi, M. J. Solomon, “Self-Propulsion and Active Motion of Janus Ellipsoids,” The Journal of Physical Chemistry B 122(44), 10247–10255 (2018).

108. W. Zhang, J. He, and X. Dong, “Controlled Fabrication of Polymeric Janus Nanoparticles and Their Solution Behaviors,” RSC Advances 6(107), 105070–105075 (2016).

109. R. Kadam, J. Ghawali, M. Waespy, M. Maas, and K. Rezwan, “Janus Nanoparticles Designed for Extended Cell Surface Attachment,” Nanoscale 12(36), 18938–18949 (2020).

110. S. Bhattacharjee, “DLS and Zeta Potential – What They Are and What They Are Not?” Journal of Controlled Release 235, 337–351 (2016).

111. J. C. Wilson, B. Y. H. Liu, “Aerodynamic particle size measurement by laser-doppler velocimetry,” Journal of Aerosol Science 11(2), 139–150 (1980).

112. S. Dattani, X. Li, C. Lampa, D. Lechuga-Ballesteros, A. Barriscale, B. Damadzadeh, and B. R. Jasti, “A comparative study on micelles, liposomes and solid lipid nanoparticles for paclitaxel delivery,” International Journal of Pharmaceutics 631, 122464 (2023).

113. D. Gonzalez-Mendoza, B. Valdez-Salas, E. Bernardo-Mazariegos, O. Tzintzun-Camacho, F. Gutiérrez-Miceli, V. Ruíz-Valdiviezo, L. Rodríguez-Hernández, and G. Sanchez-Viveros, “Influence of monometallic and bimetallic phytonanoparticles on physiological status of mezquite,” Open Life Sciences 14(1), 62–68 (2019).

114. R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, and S. M. Hussain, “Characterization of Nanomaterial Dispersion in Solution Prior to In Vitro Exposure Using Dynamic Light Scattering Technique,” Toxicological Sciences 101(2), 239–253 (2008).

115. M. K. Rasmussen, J. N. Pedersen, and R. Marie, “Size and Surface Charge Characterization of Nanoparticles with a Salt Gradient,” Nature Communications 11(1), 2337 (2020).

116. G. Nifontova, T. Tsoi, A. Karaulov, I. Nabiev, and A. Sukhanova, “Structure–Function Relationships in Polymeric Multilayer Capsules Designed for Cancer Drug Delivery,” Biomaterials Science 10(18), 5092–5115 (2022).

117. G. Nifontova, V. Krivenkov, M. Zvaigzne, A. Efimov, E. Korostylev, S. Zarubin, A. Karaulov, I. Nabiev, and A. Sukhanova, “Nanoparticle-Doped Hybrid Polyelectrolyte Microcapsules with Controlled Photoluminescence for Potential Bioimaging Applications,” Polymers 13(23), 4076 (2021).

118. R. Bilan, A. Ametzazurra, K. Brazhnik, S. Escorza, D. Fernández, M. Uríbarri, I. Nabiev, and A. Sukhanova, “Quantum-Dot-Based Suspension Microarray for Multiplex Detection of Lung Cancer Markers: Preclinical Validation and Comparison with the Luminex XMAP® System,” Scientific Reports 7(1), 44668 (2017).

119. H.-X. Wang, Z.-Q. Zuo, J.-Z. Du, Y.-C. Wang, R. Sun, Z.-T. Cao, X.-D. Ye, J.-L. Wang, K. W. Leong, and J. Wang, “Surface Charge Critically Affects Tumor Penetration and Therapeutic Efficacy of Cancer Nanomedicines,” Nano Today 11(2), 133–144 (2016).

120. A. Sukhanova, S. Poly, S. Bozrova, É. Lambert, M. Ewald, A. Karaulov, M. Molinari, and I. Nabiev, “Nanoparticles With a Specific Size and Surface Charge Promote Disruption of the Secondary Structure and Amyloid-Like Fibrillation of Human Insulin Under Physiological Conditions,” Frontiers in Chemistry 7, 480 (2019).

121. A. A. Abdellatif, M. A. Younis, M. Alsharidah, O. A. Rugaie, and H. M. Tawfeek, “Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential,” International Journal of Nanomedicine 17, 1951–1970 (2022).

122. 1A. Sukhanova, S. Bozrova, E. Gerasimovich, M. Baryshnikova, Z. Sokolova, P. Samokhvalov, C. Guhrenz, N. Gaponik, A. Karaulov, and I. Nabiev, “Dependence of Quantum Dot Toxicity In Vitro on Their Size, Chemical Composition, and Surface Charge,” Nanomaterials 12(16), 2734 (2022).

123. G. Nifontova, F. Ramos-Gomes, F. Alves, I. Nabiev, and A. Sukhanova, “Stimulus-Sensitive Theranostic Delivery Systems Based on Microcapsules Encoded with Quantum Dots and Magnetic Nanoparticles,” in Quantum Dots: Applications in Biology, A. Fontes, B. Santos (Eds.), Humana, New York, 199–212 (2020).

124. T. Tsoy, A. Karaulov, I. Nabiev, and A. Sukhanova, “Multiplexed Detection of Cancer Serum Antigens with a Quantum Dot-Based Lab-on-Bead System,” in Quantum Dots: Applications in Biology, A. Fontes, B. Santos (Eds.), Humana, New York, 225–236 (2020).

125. C. G. Conner, J. McAndrew, S. Menegatti, and O. D. Velev, “An Accelerated Antibody Aggregation Test Based on Time Sequenced Dynamic Light Scattering,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 653, 129833 (2022).

126. W. A. Lindner, J. M. Brand, “A Coherent Approach to the Svedberg Equation,” Biochemical Education 15(2), 71–72 (1987).

127. E. Dzananovic, T. R. Patel, G. Chojnowski, M. J. Boniecki, S. Deo, K. McEleney, S. E. Harding, J. M. Bujnicki, and S. A. McKenna, “Solution Conformation of Adenovirus Virus Associated RNA-I and Its Interaction with PKR,” Journal of Structural Biology 185(1), 48–57 (2014).

128. T. R. Patel, M. Meier, J. Li, G. Morris, A. J. Rowe, and J. Stetefeld, “T-shaped Arrangement of the Recombinant Agrin G3 - IgG Fc Protein,” Protein Science 20(6), 931–940 (2011).

129. A. Badasyan, A. Mavrič, I. K. Cigić, T. Bencik, and M. Valant, “Polymer Nanoparticle Sizes from Dynamic Light Scattering and Size Exclusion Chromatography: The Case Study of Polysilanes,” Soft Matter 14(23), 4735–4740 (2018).

130. T. R. Patel, C. Bernards, M. Meier, K. McEleney, D. J. Winzor, M. Koch, and J. Stetefeld, “Structural Elucidation of Full-Length Nidogen and the Laminin–Nidogen Complex in Solution,” Matrix Biology 33, 60–67 (2014).

131. P. Sharma, D. Rajalingam, T. K. S. Kumar, and S. Singh, “A Light Scattering Study of the Interaction of Fibroblast Growth Factor (FGF) with Its Receptor,” Biophysical Journal 94(9), L71–L73 (2008).

132. A. D. Hanlon, M. I. Larkin, and R. M. Reddick, “Free-Solution, Label-Free Protein-Protein Interactions Characterized by Dynamic Light Scattering,” Biophysical Journal 98(2), 297–304 (2010).

133. J. D. Driskell, C. A. Jones, S. M. Tompkins, and R. A. Tripp, “One-Step Assay for Detecting Influenza Virus Using Dynamic Light Scattering and Gold Nanoparticles,” The Analyst 136(15), 3083 (2011).

134. E. Dzananovic, Astha, G. Chojnowski, S. Deo, E. P. Booy, P. Padilla-Meier, K. McEleney, J. M. Bujnicki, T. R. Patel, and S. A. McKenna, “Impact of the Structural Integrity of the Three-Way Junction of Adenovirus VAI RNA on PKR Inhibition,” PLoS ONE 12(10), e0186849 (2017).

135. Y. Gao, S. Xu, T. He, J. Li, L. Liu, Y. Zhang, S. Ge, M. Yan, H. Liu, and J. Yu, “Ultrasensitive and Specific MicroRNA Detection via Dynamic Light Scattering of DNA Network Based on Rolling Circle Amplification,” Sensors and Actuators B: Chemical 324, 128693 (2020).

© 2014-2023 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+